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Smith, Joseph, Ph.D., Autumn 2016    Fish and Wildlife Biology 
 
Landscape to local: a multi-scale evaluation of voluntary efforts to reduce fragmentation 
and enhance management of rangelands for sage-grouse. 
 
Chairperson:  Dr. David E. Naugle 
 
 
For imperiled species, the hierarchical nature of habitat selection suggests the need for a 
hierarchical approach to conservation: address threats to persistence operating at broad 
scales on populations before focusing on the quality of patches or availability of 
particular resources used by individuals. We apply this approach to conservation and 
management of habitat for greater sage-grouse (Centrocercus urophasianus) in the 
eastern portion of their range where cropland conversion continues to fragment sagebrush 
grasslands. Using locations of active leks in portions of Montana, Wyoming, North 
Dakota, and South Dakota as spatial indices of populations, we found sage-grouse 
distribution was highly sensitive to cropland fragmentation in a 12 mi2 landscape. A 
single square-mile parcel broken out into cropland can thus reduce population persistence 
within an area twelve times that size, emphasizing the need to conserve large, intact 
sagebrush landscapes. Simulated cropland buildout scenarios indicate 5-7% of the 
northern Great Plains population remains vulnerable to future cropland conversion. We 
demonstrate, however, that with a targeting scheme incorporating biological value, risk, 
and cost, a $100M investment in conservation easements could reduce potential losses by 
80%. Next, using radio-marked birds to locate and monitor nests in a large-scale, 
replicated, natural grazing experiment in central Montana, we tested hypothesized 
relationships between livestock grazing and sage-grouse nest site selection and survival 
and evaluated effects of rest-rotation grazing systems on vegetation structure and nest 
survival. Surprisingly, we found no evidence that herbaceous vegetation structure 
affected choice of nest site or nest survival. Instead, females selected nest sites based on 
relatively static features such as sagebrush cover, terrain roughness, landscape 
fragmentation, and distance to major roads, while nest survival was affected primarily by 
severe weather. Rotational grazing systems had negligible effects on upland vegetation 
structure and no effect on sage-grouse nest survival. Finally, in light of recent research 
which demonstrated how commonly-used field methods can produce inflated or spurious 
inference on the relationship between vegetative concealment and nest survival, we re-
analyze four independently collected sage-grouse nest datasets to test for relationships 
between grass height and nest survival. All four datasets indicated strong, positive effects 
of grass height on nest survival prior to correction for biased timing of vegetation 
measurement. Once this bias was accounted for, however, none of the datasets supported 
a positive effect, confirming that plant phenology is largely responsible for previously-
reported relationships between herbaceous hiding cover and nest success in sage-grouse. 
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PREFACE 

This dissertation is organized into three chapters, each formatted for submission as a 

peer-reviewed article. At the time of submission, Chapter 1, “Reducing cultivation risk 

for at-risk species: predicting outcomes of conservation easements for sage-grouse,” was 

published in Biological Conservation, Chapter 2, “Effects of livestock grazing, weather, 

and landscape on nesting greater sage-grouse,” was submitted to Journal of Wildlife 

Management, and Chapter 3, “Phenology, not concealment, explains taller grass at 

successful nests in greater sage-grouse,” was in preparation for Ecology and Evolution. 

Organization, headers, and references of each chapter therefore conform to the specific 

formatting guidelines of their respective journals, with slight modifications for 

consistency and readability. The pronoun “we” is used throughout to acknowledge that 

all chapters were collaborative efforts of several co-authors.  
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CHAPTER 1: REDUCING CULTIVATION RISK FOR AT-RISK SPECIES: 

PREDICTING OUTCOMES OF CONSERVATION EASEMENTS FOR SAGE-

GROUSE 

J. T. Smitha, J. S. Evansb, c, B. H. Martind, S. Baruch-Mordob, J. M. Kieseckerb, and D. E. 

Nauglea 

a Wildlife Biology Program, University of Montana, Missoula, MT 59812, United States 

b The Nature Conservancy, Fort Collins, CO 80524, United States 

c Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, 

United States 

dThe Nature Conservancy, Helena, MT 59601, United States 

Abstract 

Conversion of native habitats to cropland is a leading cause of biodiversity loss. The 

northeastern extent of the sagebrush (Artemisia L.) ecosystem of western North America 

has experienced accelerated rates of cropland conversion resulting in many declining 

shrubland species including greater sage-grouse (Centrocercus urophasianus). Here we 

present point-process models to elucidate the magnitude and spatial scale of cropland 

effects on sage-grouse lek occurrence in eastern Montana, northeastern Wyoming, North 

Dakota and South Dakota. We also use a non-parametric, probabilistic crop suitability 

model to simulate future cropland expansion and estimate impacts to sage-grouse. We 

found cropland effects manifest at a spatial scale of 32.2 km2 and a 10 percentage point 

increase in cropland is associated with a 51% reduction in lek density. Our crop 

suitability model and stochastic cropland build-outs indicate 5-7% of the remaining 
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population in the US portion of sage-grouse Management Zone I is vulnerable to future 

cropland conversion under a severe scenario where cropland area expands by 50%. Using 

metrics of biological value, risk of conversion, and acquisition cost to rank parcels, we 

found that a US $100M investment in easements could reduce potential losses by about 

80%, leaving just over 1% of the population in the study are vulnerable to cropland 

expansion. Clustering conservation easements into high-risk landscapes by incorporating 

landscape-scale vulnerability to conversion into the targeting scheme substantially 

improved conservation outcomes. 

Keywords: Agriculture; Centrocercus urophasianus; cropland conversion; land-use 

change; Northern Great Plains; sagebrush. 

1. Introduction 

Expansion of agriculture has been implicated as a major driver of biodiversity loss at 

global and continental scales, having caused greater environmental change to the earth’s 

surface than any other land use (Wilcove et al. 1998, Green et al. 2005). Increases in 

global population and living standards are expected to add around 1 billion new hectares 

of agricultural land by 2050 (Tilman et al. 2001, 2011). In addition to direct habitat loss, 

wildlife populations in habitat fragmented by cropland may suffer from increased 

abundance of predators or parasites (Andren 1992, Rand et al. 2006, Vander Haegen 

2007, Tscharntke et al. 2012). These landscape-scale effects of cropland may vastly 

increase the scope of impacts of agriculture on sensitive species. Low elevation arable 

lands are underrepresented in existing protected areas, leaving the associated biota 

especially vulnerable (Pressey 1994, Scott et al. 2001). Preventing loss of species and 
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their habitats to cropland expansion will require innovative and strategic implementation 

of limited conservation funds. 

Semi-arid sagebrush (Artemisia L.) ecosystems of western North America exemplify the 

conservation challenges in landscapes increasingly transformed by agricultural 

production. Once covering some 63 Mha in 14 U.S. states and 3 Canadian provinces, 

sagebrush ecosystems are afforded little formal protection and have experienced 

substantial loss and fragmentation from a diversity of human activities (Knick et al. 2003, 

Knick and Connelly 2011). Associated declines in many sagebrush-dependent species 

have elicited growing concern for their long-term persistence (Suring et al. 2005). While 

much of the sagebrush ecosystem occurs on shallow soils unsuitable for cultivation, 

extensive conversion has occurred where sagebrush vegetation overlays deeper, more 

arable soils (e.g., Vander Haegen et al. 2000). Shrublands were the second most common 

source for new cropland in the US between 2008 and 2012, a period of accelerated 

conversion activity during which nearly 3 million hectares of previously uncultivated 

land was brought into crop production (data expressed in acres by Lark et al. 2015; 1 ha = 

2.47 ac). 

Greater sage-grouse (Centrocercus urophasianus, hereafter sage-grouse), a sagebrush 

obligate bird requiring large, intact shrub-dominated landscapes, was added to the 

Endangered Species Act (ESA) candidate list in 2010 following several petitions for their 

federal protection (US Department of Interior 2010). A US Department of Interior Fish 

and Wildlife Service (USFWS) determination in September 2015 found current efforts by 

state and federal agencies and other partners adequate to obviate the need for a listing, but 

significant conservation challenges remain and the species’ status will again be reviewed 
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in 2020 (US Department of Interior 2015). Cropland conversion ranks high on the list of 

threats to sage-grouse in portions of their range (USFWS 2013). Populations of sage-

grouse experienced local extirpation and isolation when regions with deep, arable soil 

formerly dominated by sagebrush were farmed in the late 19th and early 20th century 

(Swenson et al. 1987, Schroeder et al. 2000, Vander Haegen et al. 2000). Sagebrush-

dominated lands in the northern Great Plains, with their shallower soils and harsher 

growing conditions, remained relatively intact. Advancing agricultural technologies and 

periodically favorable commodities prices, however, facilitate ongoing conversion 

(Rashford et al. 2011, Sylvester et al. 2013, Lark et al. 2015) and replacement of native 

rangeland by cropland is thought to be a dominant threat to the species in the northeast 

portion of their range (USFWS 2013). The magnitude of this threat, however, is poorly 

understood. 

Cropland has been implicated as a limiting factor for sage-grouse (e.g., Walker et al. 

2007, Aldridge et al. 2008, Knick et al. 2013) but the spatial scale at which cropland 

affects sage-grouse distribution has received little attention. For example, Knick et al. 

(2013) found that approximately 25% cropland within 5 km constituted an upper 

threshold for sage-grouse breeding habitat in the western portion of their range, and 

Aldridge et al. (2008) found that extirpation was likely in counties comprised of >25% 

cropland. These investigations considered only a single scale at which to measure 

cropland surrounding leks and therefore may not adequately characterize how sage-

grouse respond to cropland. Walker et al. (2007) used an information-theoretic approach 

to select from among three scales (0.8 km, 3.2 km, and 6.4 km) and found support for the 

largest of the scales they considered. Their study area, however, was geographically 
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restricted to the Powder River Basin of northeast Wyoming and southeast Montana, 

where tilled land is a relatively minor component of the landscape and largely comprises 

irrigated hay and alfalfa, not the annual small grain crops common elsewhere in the 

northern Great Plains (USDA-NASS 2014a). A better understanding of the spatial scale 

at which cropland affects the distribution of sage-grouse populations is urgently needed 

to predict effects of future land-use change on the species’ habitat and populations and to 

prioritize conservation. 

Conservation easements—voluntary legal agreements wherein landowners retain title of 

their land but are compensated to relinquish certain uses of the land in order to foster 

conservation goals (Fishburn et al. 2009)—are the primary management tool available to 

prevent further loss of sagebrush ecosystems to cropland conversion. Easements have 

been shown to both improve conservation value of land in sagebrush ecosystems 

(Pocewicz et al. 2011) and contribute to sage-grouse conservation (Copeland et al. 2013). 

A program of targeted acquisition of easements preventing further loss and fragmentation 

of sage-grouse habitat is recognized as a necessary component of a successful 

conservation strategy (USFWS 2013, Montana Greater Sage-grouse Habitat Conservation 

Advisory Council 2014), yet the potential for such a program to mitigate cropland 

conversion has yet to be evaluated. Easements involve significant opportunity costs that 

must be compensated and are therefore expensive to implement over large areas. 

Efficient, science-based allocation of conservation easement funds is therefore critical. 

Focusing on the northern Great Plains portion of the sage-grouse range in eastern 

Montana, northeast Wyoming, and western North Dakota and South Dakota, we address 

the following questions: 1) At what scale does cropland affect the use of an area by 
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breeding sage-grouse? 2) What proportion of the known breeding population faces risk of 

local extirpation due to future cropland conversion, and where do at-risk populations 

occur? 3) How could a program of targeted conservation easement acquisition affect 

long-term outcomes for sage-grouse in this region? 

2. Methods 

2.1 Study area 

Our study area included potential habitat in sage-grouse Management Zone 1 (hereafter 

MZ1; Stiver et al. 2006), encompassing portions of eastern Montana, northeast 

Wyoming, and western North Dakota and South Dakota (Figure 1). Sage-grouse habitat 

in this region differs from other management zones in the predominance of privately-

owned lands and its widespread use for non-irrigated farming. Major landowners include 

private (70%), US Bureau of Land Management (11%), State (7%), USDA Forest 

Service (5%), and Bureau of Indian Affairs (5%) (BLM 2013). Priority Areas for 

Conservation (PACs) are areas of high sage-grouse abundance that are focal areas for 

conservation efforts across the range of sage-grouse. PACs make up approximately 15% 

of the study area (Figure 1). We excluded areas deemed naturally unsuitable for sage-

grouse because of extreme topography, the predominance of forest landcover, or presence 

of surface water by masking out areas where topographic roughness within 800 m, 

proportion forest landcover within 1 km, or proportion surface water within 800 m (see 

Table 1) exceeded the values found at known active leks (defined below). Sage-grouse 

require sagebrush during all phases of their life and leks, the communal breeding grounds 

used by sage-grouse in the spring, occur in landscapes with abundant nesting habitat 

(Gibson 1996a, Doherty 2008). Studies in the northern Great Plains indicate females 
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commonly nest >5 km from the lek at which they are bred (Walker et al. 2007, Herman-

Brunson et al. 2009, Tack 2009, J. Smith, unpublished data); hence we excluded areas 

>6.4 km from the nearest sagebrush landcover. 

2.2 Lek suitability modeling approach 

Observed locations of leks represent the best data available on sage-grouse distribution. 

Lek locations are suitable geographical indices of sage-grouse populations because they 

are proximal to habitats used during life stages critically important to population growth 

such as nesting and brood-rearing (Taylor et al. 2012). We hypothesize that sage-grouse 

use of an area for lekking is negatively related to the amount of the surrounding 

landscape converted to cropland. We treat observations of active leks as an 

inhomogeneous Poisson point-process (hereafter IPP; Cressie 1993, Warton and 

Shepherd 2010) where the expected intensity of sightings of active leks (λs) is a function 

of environmental attributes measured at various spatial scales (Table 1). Our model is 

conceptually equivalent to a resource selection function with a used-available sampling 

design (Manly et al. 2002, Johnson et al. 2006) at the second order of habitat selection 

(Johnson 1980) where we use leks to identify areas used by breeding populations and 

sample background locations randomly from a portion of the species estimated former 

geographic range. We define an active lek as a location where >1 male was observed 

displaying during the breeding season in ≥1 year between 2008 and 2012 (n = 1064). 

Where >1 active lek occurred within 1 km we included only the lek with the greatest 

average high male count (i.e., the highest count of males on a lek within a breeding 

season) during this period. 
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We used the downweighted Poisson regression method recently proposed by Renner et 

al. (2015) to maximize the IPP likelihood while estimating an intercept that would yield 

predictions on a biologically meaningful scale. This technique uses the area of the study 

area (A) to assign different weights to presence points (active leks; yi = 1) and quadrature 

or background points (yi = 0) such that the predicted response, λs, is scaled to represent 

the expected number of sightings of active leks per-unit area (Renner et al. 2015). We 

chose the number of background points n by randomly sampling 20 replicate sets of 

background points for each of 8 different values of n ranging from 1000 to 250 000, 

fitting the global model to each set, and visually assessing convergence of model log 

likelihoods as n increased (Renner et al. 2015). We fit IPP models using the glm function 

in R version 3.0.1 (R Development Core Team 2014) with Poisson distributed errors and 

a log link, set weights (wi) equal to 10-8 at presence points and A/n at background points, 

and used zi = yi/wi as the response (Renner et al. 2015). We first fit a global model 

without quadratic terms and used variance inflation factors (VIF) to screen for 

multicollinearity (Fox and Monette 1992, Dormann et al. 2013). After removing collinear 

variables (VIF ≥ 10) we proceeded with model selection and validation. 

2.3 Model selection and validation 

A primary goal was to identify the scale at which cropland influences use of an area by 

breeding sage-grouse. We used an information theoretic approach to select from among 

candidate models with proportion of the landscape in cropland measured within five 

progressively-larger neighborhoods where the previous scale was partialed out using a 

donut-hole approach (Ramsey et al. 1994, Meyer et al. 1998). Sizes of neighborhoods 

(inside diameter – outside diameter) were 0.0 – 0.8 km, 0.8 – 3.2 km, 3.2 – 6.4 km, 6.4 – 
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8.5 km, and 8.5 – 10 km. The smallest scale (0.8 km) represents effects of cropland at the 

lek site itself while accounting for error in recorded lek coordinates, and coincides with 

the resolution of our spatial data. The next largest scale (3.2 km) has been recommended 

as a buffer around leks of non-migratory populations in which vegetation should be left 

undisturbed (Connelly et al. 2000). The 6.4 km scale was chosen because other studies 

have found 3.2 km buffers insufficient to prevent population declines (Holloran 2005, 

Walker et al. 2007), and Walker et al. (2007) found support for cropland effects at this 

scale in the southern portion of our study area. We included the 8.5 km scale because it 

was identified by Holloran and Anderson (2005) as an appropriate “area of interest” 

around leks based on distribution of nests. Finally, we included the 10 km scale to 

consider effects on resources used outside of the breeding and nesting seasons when birds 

may be distributed farther from leks and because effects of oil and gas development on 

lek attendance have been detected at this distance (Gregory and Beck 2014). We fit 

candidate models (Table 2) and selected amongst them using the Akaike Information 

Criterion corrected for small sample size (AICc; Akaike 1973, Hurvich and Tsai 1989). 

The model that minimized AICc was selected as the top model and subsequently 

simplified by collapsing all included cropland buffers into a single circular buffer and re-

fitting the model as described above. 

We evaluated fit of the selected IPP model using k-folds cross-validation (Boyce et al. 

2002). We divided the presence dataset into 5 test sets each containing an approximately 

equal number of active leks and for each test set, fit the model with the data not included 

in the test set (the training set) and used the fitted model to predict intensity at test data 

locations. After binning model predictions into 10 equal-area bins, we calculated the 
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Spearman rank correlation between bin numbers—an ordinal representation of increasing 

predicted lek habitat suitability—and frequencies of test leks with fitted values falling in 

those bins. Strong positive correlation is an indication of good model performance 

(Boyce et al. 2002). 

2.4 Point-process model covariates 

We used the USDA National Agricultural Statistics Service (USDA-NASS) Cropland 

Data Layer (hereafter CDL; USDA-NASS 2014a) to measure the proportion of the 

landscape in each buffer occupied by cropland. Cells classified as an annual crop, hay, or 

alfalfa (hay and alfalfa included classes 36 and 37) in ≥1 year during the period 2008—

2012 were classified as cropland. The fallow or idle cropland class (class 61) was not 

included as we observed frequent instances of native rangeland misclassified into this 

category, a pattern initially detected due to scattered single pixels or small groups of 

pixels not resembling tilled fields and verified by inspecting aerial imagery. Using a five-

year time series, the large majority of cropland in fallow rotation should appear in our 

dataset as cropland. 

Other covariates included in all candidate models included proportion forest landcover, 

which is negatively associated with lek persistence within 1 km of leks (Baruch-Mordo et 

al. 2013); distance to mesic landcover, an important seasonal resource that affects sage-

grouse population distribution and abundance (Donnelly et al. 2016); topographic 

roughness (Doherty et al. 2008, Baruch-Mordo et al. 2013); proportion sagebrush-

dominated landcover, and non-cropland anthropogenic disturbance within 5 km (e.g., 

Knick et al. 2013). We also included 30-year normalized seasonal precipitation and 
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annual minimum and maximum temperatures to account for other abiotic factors 

potentially limiting sage-grouse lek distribution. Quadratic terms were included where 

they seemed biologically appropriate: for Forest, Sagebrush, Mesic_dist, and all climate-

related variables (see Table 1 for complete list of covariates and their abbreviations).  

All data were represented using a common resolution of 800 m. Neighborhood and 

distance calculations were first performed at the data’s native resolution before 

aggregating to a resolution approaching 800 m and resampling. All raster processing was 

performed with the R packages raster v. 2.4 (Hijmans 2014), rgdal v. 1.0 (Bivand et al. 

2015), and gdalUtils v. 0.3.1 (Greenberg and Mattiuzzi 2014). 

2.5 Linking build-outs to birds 

To identify leks at risk of extirpation from crop expansion we applied a threshold on IPP 

model predictions to create binary habitat maps for each iteration of the cropland build-

out (see section 2.7) delineating areas suitable for lek persistence from those unlikely to 

support leks (hereafter “habitat threshold”). During model validation, the 5 test datasets 

(~212 leks in each dataset) withheld during model fitting and 5 sets of randomly 

generated background points (n = 500) were used to calculate the intensity value that 

maximized the sum of sensitivity and specificity of the model (Liu et al. 2013). The five 

resulting threshold values were averaged to produce a habitat threshold used to evaluate 

the effect of crop build-out scenarios on the population. 

At each iteration of the build-out we measured cropland covariates at all leks from the 

simulated cropland map, calculated predicted intensities at active leks with the fitted IPP 

model, and determined which leks occurred in areas below the habitat threshold.  We 
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recorded the proportion of the known male population falling below the habitat threshold 

under each scenario using the maximum high male count at active leks from 2008 – 2012. 

2.6 Crop suitability model 

We fit a crop probability model indicating suitability using the non-parametric weak 

learner model, random forests (Breiman 2001). Model covariates included derived 

topographic metrics indicating surface variability, solar intercept and water holding 

capacity; climate including 30-year normalization (1981-2011) of mean annual 

precipitation, mean annual temperature, number of degree days >5°C and duration of 

frost free period; and soil characteristics from the SSURGO database (Soil Survey Staff 

2012). See Table 2 for a list of independent variables considered in model. For 

computational tractability and control of highly localized variation, we produced 

independent models for each county (n = 67) and merged county-level model predictions 

to produce a final, continuous coverage for the study area. 

To specify the dependent variable we used CDL maps from 2008 to 2011 to derive a 

binominal response. We first reclassified yearly CDL rasters to binary by reclassifying all 

crop related classes to 1 and all other classes to 0 and then summed across all years to 

produce a single crop frequency raster. We then classified all pixels with a crop 

frequency ≥1 as 1 and all others as 0. Since we had data representing both discrete, with 

highly variable spatial-area representation, and continuous processes we needed a 

sampling scheme that captured both spatial processes without introducing undue 

dependency and pseudo-replication issues in the models. Accordingly, we implemented 

an area-weighted variable random sample, using SSURGO polygons, capturing both the 
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soil spatial aggregate and variability of the underlying continuous variables. For each 

random sample we assigned the associate soil attributes and continuous variables as well 

as the binary response variable.  

We tested for multicolinearity and removed any independent variables exhibiting 

multivariate redundancy (Murphy et al. 2010). Using the resulting screened matrix we 

applied a random forest model selection (Murphy et al. 2010) with the randomForest 

(Liaw and Wiener 2002) and rfUtilities (Evans and Murphy 2014) packages in R. Each 

model was tested for zero-inflation or class imbalance (Evans and Cushman 2009). If a 

model exhibited zero-inflation, using the 1/3 rule, the Evans and Cushman (2009) variant 

of random forests was applied otherwise standard random forest was used. In exploratory 

analysis, global and class-level model error stabilized at ~500 bootstraps. Because 

interactions stabilize at a slower rate than error we doubled the number of bootstraps that 

stabilized error (b = 1001). 

Using a Kappa statistic, we applied a model fit error criteria (k > 0.7) to accept or reject a 

model. For model validation, at each county-level model we calculated the Kappa (Cohen 

1960) to chance correct the percent correctly classified, and the AUC/ROC (Fawcett 

2006) to account for the balance between true and false positive agreement. Finally, we 

ran a permutated significance test (Evans et al. 2011, Evans and Murphy 2014) to 

calculate a p-value for each model. 

2.7 Cropland build-out simulation 

We used predictions from the crop suitability model at two scales—the mean suitability 

of units of land ownership derived from the cadastral boundaries of the Public Land 
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Survey System (mean 216.3 ha, SD 73.0 ha; hereafter “parcels”) (US Bureau of Land 

Management 2013) and the suitability of individual cells (resampled to 56 m resolution, 

or 0.3 ha)—to develop build-out maps simulating possible future landscapes under 

continued cropland expansion. The two-scale approach was used to simulate land use 

decisions made hierarchically, first at the scale corresponding to units of ownership and 

second taking into account finer-scale edaphic and topographic variation. The following 

methods were used to create 1000 stochastic realizations of cropland maps at five levels 

of crop expansion—from 10 – 50% increases over 2008-2012 cropland area in 10% 

increments—to estimate effects on sage-grouse. 

Privately-owned parcels were selected (“tilled”) randomly using mean parcel-level crop 

suitability as probability weights until the desired increase in total crop area was 

achieved. Within selected parcels, cells with a suitability ≤ the 5th percentile of predicted 

suitability values underlying current cropland and cells presently classified as developed 

(i.e., roads, buildings, well pads, etc.) were exempted from classification as cropland. 

Parcels owned and managed by federal or state government were exempted from 

cropland conversion. In conservation easement scenarios, parcels selected for easement 

purchase were also exempted from cropland conversion. 

2.8 Easement targeting strategies 

We simulated cropland build-out under two conservation easement scenarios to quantify 

the potential reduction in the proportion of the population at risk that could be achieved 

with an investment similar to Wyoming’s recent conservation easement acquisition 

efforts directed at subdivision threat (Copeland et al. 2013). Our US $100M easement 
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scenarios included one in which benefit-loss-cost targeting (Newburn et al. 2005) was 

implemented using only parcel-level data, and one with a modification that allows 

landscape-scale conversion risk to be incorporated into the targeting scheme. Briefly, 

benefit-loss-cost targeting seeks to optimize allocation of resources for protecting land by 

preferentially selecting for protection those sites with the highest ratio of expected loss of 

biological “benefits” to cost (Newburn et al. 2005). 

We quantified biological benefits associated with purchasing an easement on any given 

parcel of land as a function of the abundance of sage-grouse breeding on leks within the 

distance D, equal to the outer radius of the selected scale of cropland influence in the top 

IPP model, and the area of the parcel. We made the simplifying assumption that habitat 

value of lands surrounding leks is homogeneous within this distance. The benefit function 

is: 

 

where n is the number of active leks within D of the parcel center, Nj is the maximum 

high male count from 2008 - 2012 at lek j, and R is the area of native rangeland in the 

parcel. 

Probability of cropland conversion on a parcel (P) was represented by the mean predicted 

cropland suitability from the random forest model. Cropland suitability predictions range 

from 0 to 1; we calculate the parcel-level probability of loss as the mean suitability value 

of pixels classified as rangeland. The product BP represents the expected loss of benefits 

without conservation intervention (Newburn et al. 2005). 

1

n

j
j

B N R
=

æ ö
= ç ÷
è ø
å



16 
 

Sage-grouse respond to disturbance and landscape composition at spatial scales far 

exceeding the typical size of a parcel (Knick and Connelly 2011). The habitat value of a 

given parcel to sage-grouse thus depends on the state of surrounding parcels. 

Conservation intervention preventing conversion of a particular parcel selected by the 

benefit-loss-cost method may therefore fail to preserve the biological value of that parcel 

if lower-scoring, unprotected parcels in the surrounding landscape are subsequently 

converted. This issue was acknowledged by Newburn et al. (2005) but they did not 

provide a solution for incorporating landscape-dependency into the benefit-loss-cost 

prioritization method. We tested the efficacy of a potential solution to this issue by 

incorporating an additional term expressing risk of loss at the landscape scale 

surrounding a parcel. Multiplying parcel-scale probability of conversion by landscape-

scale probability of conversion gives higher priority to parcels in vulnerable landscapes, 

effectively clustering easements into these regions and reducing the likelihood of 

inefficient outcomes. 

A general approach might simply calculate the average risk among parcels within a 

moving window of a size relevant to the species or community of interest. In our case, we 

used the vulnerability of active leks calculated from our unconstrained cropland build-

outs to represent landscape-scale risk of loss and thereby assign higher priority for 

easement acquisition to parcels surrounding leks in risky landscapes. These 

vulnerabilities—calculated as the proportion of 1000 simulated future cropland build-outs 

in which a lek falls below the habitat threshold—represent the probability that the 

landscape surrounding each lek will be converted to the extent that persistence of the 
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local population is compromised. We multiplied the high male counts of leks by their 

vulnerability (V) to modify the benefits term: 

. 

Costs of easement acquisition (C) was calculated using county-level and state-level data 

from USDA-NASS (2014b). Rangeland value is generally lower than cropland value and, 

because easements would only be purchased on rangelands, we wished to estimate 

average value of rangeland by county within the study area. Because these data are not 

tracked by USDA-NASS at the county scale, we used the ratio of rangeland value to 

cropland value at the state level to adjust county-level agricultural land values. We 

downloaded average 2015 agricultural land values for each county, which are an 

aggregate measure across agricultural land types (cropland and pastureland/rangeland). 

We then determined the proportion of each county’s agricultural land area in cropland 

and rangeland, again using USDA-NASS statistics, and used this proportion and the 

statewide rangeland/cropland value ratio to adjust agricultural land value to reflect 

rangeland value. The cost of purchasing an easement on a given parcel was calculated by 

multiplying the parcel’s area by the county-level rangeland value and multiplying again 

by an average diminution rate of 0.35, which reflects typical diminution rates for 

easements purchased by The Nature Conservancy in eastern Montana (B. Martin, 

personal communication).  

In our parcel-scale benefit-loss-cost targeting scenario, parcels received a score, 

 and were selected in descending order until US $100M was exhausted. In our 
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modified parcel+landscape benefit-loss-cost targeting scenario, parcels were selected in 

descending order of . We report mean per-area cost, mean crop suitability, 

and median sum of males counted on known leks within D for parcels selected under 

each scenario. 

3. Results 

3.1 Model selection 

Model log likelihoods stabilized with 250 000 background points. Variance Inflation 

Factors for all variables were <5, so no covariates were screened from inclusion in 

candidate models. The IPP model with cropland measured at 0 – 0.8 km and 0.8 – 3.2 km 

was most supported (Table 3). In all cases confidence intervals for cropland coefficients 

at scales larger than 3.2 km substantially overlapped zero. We therefore collapsed the 0 – 

0.8 km and 0.8 – 3.2 km scales into a single circular buffer (radius 3.2 km and area 32.2 

km2) and re-fit the model with this single cropland covariate to derive coefficient 

estimates and standard errors (Table 4). Model validation indicated good model fit; 

overall Spearman rank correlation between predicted intensity bin and test lek density 

was 0.97 and all test sets had correlations > 0.95. 

The selected model indicates point intensity of active leks declines rapidly as the 

proportion of cropland within the 32.2 km2 landscape (Crop_3.2) increases (Figure 2). 

The estimated coefficient indicates a 10 percentage point increase in Crop_3.2 is 

associated with a 51% decrease in expected density of active leks (95% CI from 46% to 

56%). Manipulating cropland at all active leks from 0-1 in increments of 0.01, we found 

/S B P C¢ ¢=



19 
 

10% of leks would fall below the threshold once cropland reached 0.08 and half the leks 

in our study area would fall below the habitat threshold once cropland reached 0.22. 

3.2 Crop suitability model 

Each county-level model met our error criteria (k > 0.7). All models were also significant 

from random at  with a Kappa (mean = 0.740, min = 0.707, max = 0.774 ) and 

AUC of (mean = 0.790, min = 0.670, max = 0.860). In addition to quantitative evaluation 

of models it should be noted that, once merged together, there was considerable 

consistency in the spatial predictions of county-level models. 

3.3 Build-out Analysis 

The sum of sensitivity and specificity of the IPP model was achieved with a threshold of 

. Presently 122 of 1064 leks, comprising 7.6% of the MZ1 population, exist 

in places predicted to be below the habitat threshold (Figure 1). For the purposes of our 

build-out analysis we are concerned only with future impacts of cropland expansion; we 

therefore consider this 7.6% of the population at these 122 already-impacted leks the 

baseline to which scenarios are compared. Hereafter, reported percentages refer only to 

those males counted on leks that are predicted to be above the habitat threshold presently, 

and that fall below the threshold with simulated cropland expansion. 

Under cropland build-out unconstrained by conservation easements, the percentage of the 

breeding population falling below the habitat threshold ranged from 0.8% (95% CI from 

0.3 – 1.3%) with a 10% growth in cropland area to 5.7% (95% CI from 4.7 – 6.7%) with 

a 50% growth in cropland area (Figure 3 and Table 5). One hundred nineteen leks, 

0.001p =

32.8 10sl
-= ´
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representing 11.3% of the population, had vulnerabilities ≥ 0.1 (Figure 1). Fifty-one 

percent of males counted on these leks (“vulnerable males”) were found in 5 PACs: 

Fergus (1), McCone-Garfield (2), Golden Valley (3), and Musselshell (4) in Montana and 

Buffalo (5) in Wyoming (see numbered PACs in Figure 1). Most of the remaining 

vulnerable males (40%) were outside PACs. 

Benefit-loss-cost targeting using conversion risk only at the parcel scale reduced the 

percentage of the population falling below the habitat threshold to 0.4% (95% CI from 

0.2 – 0.7%) with a 10% growth in cropland area and 2.6% (95% CI from 2.1 – 3.2%) 

with a 50% growth in cropland area. This represents a reduction of potential future losses 

of about 53%. Selected parcels (n = 1114, total area 207 200 ha) had a median of 45 

males breeding on leks within 3.2 km, a mean crop suitability of 0.294, and cost US 

$482.38 per hectare (US $195.22 per acre) on average. 

Incorporating the vulnerability of leks into the benefit-loss-cost score significantly 

improved the efficiency of easements, reducing the percentage of the population falling 

below the habitat threshold to 0.1% (95% CI from 0.0 – 0.3%) with a 10% growth in 

cropland area and 1.1% (95% CI from 0.7 – 1.6%) with a 50% growth in cropland area. 

The landscape + parcel scale benefit-loss-cost targeting scenario resulted in a reduction of 

potential future losses of about 80%. Selected parcels (n = 926, total area 190 300 ha) 

had a median of 27 males breeding on leks within 3.2 km, a mean crop suitability of 

0.344, and cost US $525.44 per hectare (US $212.63 per acre) on average. Benefits of 

both easement targeting methods increased as the severity of crop expansion increased 

(Figure 3). 

4. Discussion 
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Adding to evidence that sage-grouse respond negatively to a growing human footprint, 

we show that a 10 percentage point increase in cropland in a 32.2 km2 (12.4 mi2) 

landscape can reduce lek density by more than half. Ten percent of 32.2 km2 equates to 

slightly more than one Public Land Survey System section (2.59 km2 or 1 mi2); a single 

landowner breaking out a new field can thus strongly reduce persistence of leks in a 

landscape ten times the size of the field itself. Our findings suggest that half of known 

active leks risk extirpation with ≤22% of the landscape in cropland, which generally 

agrees with results of previous investigations that found low tolerance for this disturbance 

(e.g., Aldridge et al. 2008, Knick et al. 2013). Importantly, our study builds upon 

previous work by clarifying the scale at which the cropland effect manifests. 

Approximately 96% of known active leks in MZ1 have <15% cropland within the 32.2 

km2 landscape (Figure 2), highlighting once again the importance of large, intact 

sagebrush landscapes to sage-grouse persistence. Conservation efforts to prevent future 

conversion should focus on protecting landscapes with little or no existing cropland.  

Several mechanisms could be responsible for the strong negative effect of cropland 

fragmentation on lek density. Populations in crop-fragmented landscapes may be exposed 

to increased risk of nest predation or early brood failure due to altered predator 

abundance or their foraging efficiency—a phenomenon well documented in ground-

nesting ducks (Greenwood et al. 1995, Phillips et al. 2003). Processes affecting the 

suitability of the breeding grounds more directly might include increased predation 

during lekking or while birds are concentrated near leks in spring. Avoidance of cropland 

may also play a role. Behavioral studies suggest lek location is driven at least in part by 

males positioning themselves to intercept females moving between wintering and nesting 
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ranges (Bradbury et al. 1989, Gibson 1996b). Therefore, disruption of female movements 

during this period may reduce probability of lek formation or increase lek abandonment 

in landscapes fragmented by cropland. GPS-tracked sage-grouse in northeast Montana 

and southern Saskatchewan, which strongly avoided cropland in their migration between 

wintering and breeding ranges, lend preliminary support to this hypothesis (Smith 2013). 

Mortality of sage-grouse from exposure to organophosphate insecticides has been 

documented (Blus et al. 1989) and may periodically contribute to reduced survival, 

especially if grouse are attracted to field margins or alfalfa fields by abundant insect food 

sources during or immediately after insecticide application. 

Without additional investment in conservation easements, our simulated cropland build-

outs indicate around 5-7% of the population could be lost in a worst-case scenario of a 

50% increase in total cropland area. Our conservation easement scenarios suggest, 

however, that most potential losses can be prevented with a strategically-implemented US 

$100M investment. The benefit-loss-cost targeting method, which reduced potential 

losses by over 50%, selected parcels with moderately high biological value and moderate 

probability of loss, while per-area cost was below the study area average (mean of all 

privately owned parcels: US $515.52 per hectare or US $208.58 per acre). Parcels 

selected by the parcel+landscape benefit-loss-cost targeting scheme, which resulted in an 

80% reduction in potential losses, had lower biological value but higher risk compared to 

the parcel-only scheme, and slightly higher cost. Parcels of particularly high biological 

value were not often selected by either targeting scheme because biological value and 

risk were negatively correlated (r = -0.13, p < 0.0001). This highlights that ignoring risk 

could be highly detrimental, reducing efficiency by spending resources protecting habitat 
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at very low risk of conversion. Cost and risk were weakly but significantly positively 

correlated (r = 0.17, p < 0.0001), indicating that accounting for cost improved efficiency 

(Newburn et al. 2005). Accounting for risk is of paramount importance in this system, 

however, because risk was much more variable (coefficient of variation [CV] = 0.96) 

than cost (CV = 0.32) and was similarly variable to biological value (CV = 1.0). 

The recent mobilization of state and local governments, federal agencies, and non-

governmental organizations to implement proactive conservation to prevent an ESA 

listing suggests the financial resources necessary to implement an easement program on 

this scale are within reach. For example, since 2005 Wyoming has drawn from a 

permanent trust established by the legislature to fund conservation easements, 

permanently protecting hundreds of thousands of hectares of sage-grouse habitat at risk 

of development. Montana recently established a Sage Grouse Stewardship Fund which 

made available US $10M for habitat protection and improvement projects on private 

lands over a two-year period (Executive Order No. 10-2014). USDA Natural Resources 

Conservation Service’s Sage Grouse Initiative has channeled > US $200M from the 

conservation title of the Agriculture Act of 2014 (commonly known as the Farm Bill) 

toward voluntary, incentive-based conservation for sage-grouse, including a commitment 

to acquire ~24 300 ha (60 000 acres) in conservation easements in Montana, North 

Dakota, and South Dakota by 2018 to prevent cropland conversion (USDA NRCS 2015). 

Because our envisioned easement program would likely take a decade or more to 

implement even with recently increased levels of funding and human capacity, the order 

with which properties are placed under easement is an important aspect of the 

conservation strategy. The conservation value of an easement depends on the intactness 
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of the surrounding landscape, and a group of geographically clustered easements may 

more effectively conserve habitat than an equal area in easements isolated by great 

distances. The better performance of our parcel+landscape easement scenario (Figure 3) 

illustrates this point. We recommend a strategic approach amongst land trusts and 

funding entities that conserves entire vulnerable landscapes rather than scattered 

individual properties. Ultimately, while we strongly recommend a data-driven approach 

that uses biological value, risk, and cost to prioritize parcels, easements are a voluntary 

conservation tool that relies on landowner interest and relationships between 

communities and land trusts. Additionally, local practitioners may have access to 

auxiliary information regarding conversion risk or cost of particular properties. For 

example, areas where farming is a dominant feature of local residents’ cultures and 

economies may face higher risk of conversion than predicted by biophysical factors. 

Successful implementation of a science-based easement acquisition program such as the 

one we describe relies on the expertise of competent, locally-based conservation 

practitioners (Neudecker et al. 2011). 

We used a presence-only approach to model lek sighting rate as a function of 

environmental covariates because this approach allowed us to take advantage of the 

extensive available dataset of largely opportunistically-collected lek observations and 

incorporate information about disturbance in areas formerly suitable for sage-grouse. A 

shortcoming common to all presence-only analyses is the inability to estimate true 

occurrence rates (Aarts et al. 2012, Phillips and Elith 2013). Predicted sighting rates are, 

however, expected to be proportional to occurrence rates if covariates influencing 

occurrence do not also influence detection (Phillips et al. 2009, Fithian and Hastie 2013). 
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Our coefficient estimates likely provide reliable inference about effects of cropland on 

lek density, as cropland variables tested were not highly correlated with other human 

features, such as distance to roads and urban areas, potentially related to detection (all 

|𝑟| 	< 	0.35). We caution, however, against using our model to infer effects of 

anthropogenic disturbances other than cropland, which are likely to be correlated with 

features affecting detection; we instead point the reader to numerous studies focused 

specifically on these disturbances (e.g., Aldridge and Boyce 2007, Walker et al. 2007, 

Doherty et al. 2008, Doherty et al. 2010, Holloran et al. 2010, Naugle et al. 2011). 

If sagebrush ecosystem conservation goals include private lands, then the high economic 

utility of cropland conversion must be counterbalanced by policies and programs that 

incentivize conservation of non-market benefits provided by native sagebrush grazing 

lands. The ‘Sodsaver’ provision in the 2014 Farm Bill (Title XI), which sharply reduces 

crop insurance premium subsidies crops grown on previously untilled land, may benefit 

sage-grouse by discouraging conversion in locations that are marginal for cultivation but 

provide sage-grouse habitat. In regions where sage-grouse habitat overlays more 

productive arable land, however, greater incentives are needed to prevent future habitat 

loss. Here, we have demonstrated that efficient allocation of US $100M in conservation 

easements can provide substantial coverage of sage-grouse habitat at risk of conversion. 
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Tables 

Table 1. Covariates used in IPP models of active sage-grouse lek sighting rate in sage-

grouse Management Zone 1.  

Covariate (Abbreviation) Scale Source 

Landcover     

Proportion forest landcover (Forest) ‡ 1.0 km 1 

Proportion sagebrush-dominated landcover (Sagebrush)‡ 6.4 km 1 

Distance to mesic landcover (Dist_mesic) ‡ — 1 

Topography     

Standard deviation of elevation (Roughness) ‡ 0.8 km 2 

Climate     

Average annual minimum temperature (Min temp) ‡ 0.8 km 3 

Average annual maximum temperature (Max temp) ‡ 0.8 km 3 

Average total precipitation March-May (Spring precip) ‡ 0.8 km 3 

Average total precipitation June-August (Summer precip) ‡ 0.8 km 3 

Average total precipitation September-November (Fall precip) ‡ 0.8 km 3 

Anthropogenic features     

Proportion non-cropland anthropogenic disturbance (Disturb)‡ 5.0 km 4 

Cropland     

Proportion cropland (Crop_0.8)‡ 0 - 0.8 km 5 

Proportion cropland (Crop_3.2)‡ 0.8 - 3.2 km 5 

Proportion cropland (Crop_6.4) 3.2 - 6.4 km 5 

Proportion cropland (Crop_8.5) 6.5 - 8.5 km 5 

Proportion cropland (Crop_10.0) 8.5 - 10.0 km 5 

Sources: 1: LANDFIRE (2008) 2: Standard deviation of elevation from 30 m DEM (Gesch et al. 2002, 

Gesch 2007) 3: 30-year climate normals (1981-2010; PRISM Climate Group 2014); 4: Proportion of area 
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covered by disturbances after converting vector data sources to a single cumulative raster layer (30 m 

resolution). Vector data sources include: National Landcover Dataset  (Frye et al. 2011), State oil & gas 

boards of Montana, North Dakota, South Dakota, and Wyoming, TIGER/Line vector data (US Census 

Bureau 2013), and Federal Communications Commission (wireless.fcc.gov); 5: National Agricultural 

Statistics Service Cropland Data Layer (USDA-NASS 2014a) 
‡ In top IPP model 
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Table 2. Covariates used to fit random forest model predicting cropland in sage-grouse 

Management Zone 1. 

Covariate
† Source/Citation 

Annual Drought Index 1 

Degree Days <5C 1 

Frost Free Period 1 

Mean Annual Temperature 1 

Mean Annual Precipitation 1 

Compound Topographic Index (wetness) 2 

Landform Index 3 

Roughness 3x3 focal window 4 

Roughness 27x27 focal window 4 

Slope * COS(Aspect) 5 

Slope * SIN(Aspect) 5 

Slope in degrees 6 

Slope Position 7 

Surface Relief Ratio 3x3 focal window 8 

Surface Relief Ratio 27x27 focal window 8 

Topographic Radiation Aspect Index 9 

Available water storage 25cm 10 

Available water storage 50cm 10 

Available water storage 100cm 10 

Available water storage 150cm 10 

Distance from the soil surface to top of a bedrock layer 10 

Proportion of dominate drainage class 10 

Proportion of wettest drainage class 10 

Proportion of dominant flood frequency class 10 
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Proportion of highest probability class representing annual probability of a flood event 10 

Proportion of hydric soils 10 

Proportion of soils with high runoff potential 10 

Proportion of soil  unit exhibiting water being ponded on the soil surface 10 

Slope gradient of soil map unit 10 

Weighted average of slope gradient of soil map unit 10 

Annual shallowest depth to a wet soil layer (water table) 10 

Growing season shallowest depth to a wet soil layer (water table) 10 

National Commodity Crop Productivity Index 11 

 
†

All data were resampled to a common resolution of 30 m for model fitting and prediction, then resampled 

to 56 m for cropland build-out to speed calculation. 

Sources: 1: Rehfeldt et al. (2006); 2: Gessler et al. (1995); 3: McNab (1993); 4: Riley et al. (1999); 5: 

Stage (1976); 6: Horn (1981); 7: Blaszczynski (1997); 8: Pike (1971); 9: Roberts and Cooper (1989); 10: 

Soil Survey Staff (2012); 11: USDA. 
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Table 3. Candidate models of active lek sighting rate ranked by Akaike Information 

Criterion corrected for small sample size (AICc). 

Model K AICc ΔAICc wti 

Crop_0.8 + Crop_3.2 23 12257.78 0.00 0.59 

Crop_0.8 + Crop_3.2 + Crop_6.4 24 12259.54 1.76 0.24 

Crop_0.8 + Crop_3.2 + Crop_6.4 + Crop_8.5 25 12260.86 3.08 0.13 

Crop_0.8 + Crop_3.2 + Crop_6.4 + Crop_8.5 + Crop_10.0 26 12262.86 5.08 0.05 

Crop_0.8 22 12284.16 26.38 0.00 

Null
† 21 12623.28 365.50 0.00 

†
The null model and all other candidate models include all topographic, landcover, climate, and non-

cropland anthropogenic variables indicated in Table 1. 
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Table 4. Model coefficients of top-ranked IPP model. 

Coefficient Estimate SE z-value p-value 

Intercept -3.6E+01 9.5E+00 -3.84 0.0001 

Roughness -1.2E-01 7.4E-03 -15.65 < 0.0001 

Sagebrush 9.1E+00 8.2E-01 11.15 < 0.0001 

Sagebrush2 -1.5E+01 1.6E+00 -9.54 < 0.0001 

Forest -1.1E+01 2.0E+00 -5.15 < 0.0001 

Forest2 1.2E+01 1.1E+01 1.16 0.2469 

Mesic_dist 1.7E-01 4.0E-02 4.31 < 0.0001 

Mesic_dist2 -1.6E-02 4.0E-03 -4.05 0.0001 

Winter_precip 1.8E-01 4.8E-02 3.70 0.0002 

Winter_precip2 -2.2E-03 7.6E-04 -2.91 0.0037 

Spring_precip 1.2E-01 3.5E-02 3.54 0.0004 

Spring_precip2 -5.5E-04 1.5E-04 -3.62 0.0003 

Summer_precip 4.1E-02 2.6E-02 1.60 0.1105 

Summer_precip2 -1.4E-04 1.0E-04 -1.45 0.1473 

Fall_precip -2.6E-01 4.2E-02 -6.07 < 0.0001 

Fall_precip2 1.5E-03 2.9E-04 5.31 < 0.0001 

Min_temp 1.6E-01 8.3E-02 1.95 0.0517 

Min_temp2 2.0E-02 7.2E-02 0.28 0.7819 

Max_temp 4.3E+00 1.3E+00 3.42 0.0006 

Max_temp2 -1.6E-01 4.3E-02 -3.66 0.0003 

Disturb -4.3E+00 1.4E+00 -3.18 0.0015 

Crop_3.2 -7.2E+00 5.3E-01 -13.42 < 0.0001 
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Table 5. Effects of simulated cropland expansion on proportion of sage-grouse population 

in sage-grouse Management Zone 1 occurring in areas falling below habitat threshold. 

  
Scenario Cropland 

Increase 
Proportion of population occurring below habitat 
threshold† 

    Mean Lower CL‡ Upper CL 

No Conservation 10% 0.008 0.003 0.013 

20% 0.018 0.011 0.024 

30% 0.029 0.021 0.037 

40% 0.042 0.034 0.051 

50% 0.057 0.047 0.067 

Benefit-Loss-Cost Targeting 
(Parcel) 

10% 0.004 0.002 0.007 

20% 0.009 0.005 0.013 

30% 0.014 0.010 0.019 

40% 0.020 0.015 0.025 

50% 0.026 0.021 0.032 

Benefit-Loss-Cost Targeting 
(Landscape + Parcel) 

10% 0.001 0.000 0.003 

20% 0.003 0.001 0.005 

30% 0.005 0.003 0.008 

40% 0.008 0.004 0.011 

50% 0.011 0.007 0.016 

† Habitat threshold is the value that maximizes the sum of sensitivity and specificity of 

the IPP model (see section 2.5). 

‡ Confidence limits contain central 95% of 1000 iterations of cropland build-outs. 
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Figures 

 

Figure 1. Study area, sage-grouse Management Zone 1 (MZ1), showing active leks and 

areas currently occupied by cropland. Lek color indicates vulnerability to cropland 

expansion—i.e., the proportion of 1000 stochastic cropland build-outs in which the lek 

fell below the model-based habitat threshold. Dark gray points indicate leks that currently 

fall below the habitat threshold (n = 122, see section 3.3). Point size is proportional to 

maximum recorded male attendance from 2008 – 2012. Numbered PACs contain more 

than half of the vulnerable males (section 3.3). Inset depicts the global range of sage-

grouse (historical range in light green, current range in dark green) and boundaries of 

management zones.  
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Figure 2. Mean (black line) and 95% confidence intervals (dashed gray lines) of expected 

intensity of active lek sightings as a function of proportion cropland at the 32.2 km2 scale. 

Rug plots indicates proportion cropland measured at active leks in Management Zone 1 

(n = 1064, top) and an equal number of random locations in Management Zone 1 

(bottom). 96% of active leks are found in landscapes with proportion cropland  <0.15. 
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Figure 3. Proportion of male breeding population in sage-grouse Management Zone 1 

falling below the habitat suitability threshold with simulated expansion of cropland area 

from 10 – 50% over 2012 extent. Error bars indicate lower and upper bounds of the 

central 95% of outcomes from 1000 stochastic cropland build-out iterations. 

 

  



50 
 

CHAPTER 2: EFFECTS OF LIVESTOCK GRAZING, WEATHER, AND 

LANDSCAPE ON NESTING GREATER SAGE-GROUSE 
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Drive, Missoula, MT 59812, USA 
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Missoula, MT 59812, USA 
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MT, 59602, USA 
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ABSTRACT 

Grazing by domestic livestock is a ubiquitous land use in the sagebrush (Artemisia L.) 

biome of western North America. Widespread, long-term population declines in greater 

sage-grouse (Centrocercus urophasianus) have elicited concern about potential negative 

effects of livestock management practices on sage-grouse populations. Hypothesized 

relationships, mostly untested, between livestock and sage-grouse nesting ecology have 

played a prominent role in shaping public land livestock grazing policy and broader 

conservation efforts aimed at bolstering struggling populations. We tested hypothesized 

relationships between livestock grazing and nest site selection and nest survival and 

evaluated whether recently-implemented rotational grazing systems positively affected 
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nesting habitat quality as part of a large-scale, replicated, natural experiment in central 

Montana. Contrary to expectations, we found nest site selection and nest survival were 

unrelated to herbaceous vegetation structure, livestock presence, and indices of local 

grazing pressure. Rather, females selected nest sites based on relatively static features 

such as sagebrush cover, topography, density of anthropogenic features, and distance 

from roads, while nest failure was driven by extreme precipitation events. We discuss our 

findings in the context of recent literature on the relationship between vegetative 

concealment and nest predation, and emphasize the importance of considering the 

hierarchical nature of wildlife-habitat relationships when identifying threats to population 

persistence and crafting habitat management policies. 

KEY WORDS Centrocercus urophasianus, Greater sage-grouse, grazing management, 

habitat selection, livestock, nest survival, Northern Great Plains 

INTRODUCTION 

Once occupying > 62 million ha (Kuchler 1970), nearly half the sagebrush (Artemisia L.) 

biome of western North America has been lost to sagebrush eradication, conversion to 

cropland, replacement by exotic annual grasslands, conifer encroachment, and expanding 

human settlements (Knick et al. 2003, Schroeder et al. 2004). Loss and fragmentation of 

sagebrush steppe has resulted in concomitant impacts to a broad array of sagebrush-

dependent wildlife (Rich et al. 2005, Suring et al. 2005). Strategic, science-based 

management of land practices in remaining sagebrush grasslands is thus a top 

conservation priority (Davies et al. 2011). Grazing by domestic livestock is ubiquitous 

across sagebrush ecosystems (Anderson and Holte 1981, Knick et al. 2003). Management 
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of livestock grazing therefore has potentially widespread implications for the integrity of 

the sagebrush ecosystem and its associated wildlife populations.  

Greater sage-grouse (Centrocercus urophasianus; hereafter sage-grouse) are a species of 

conservation concern that embody the challenges of conserving sagebrush ecosystems. 

Population declines since the mid 20th century are attributed to widespread habitat loss 

and degradation (Connelly and Braun 1997, Knick and Connelly 2011). Following 

several petitions for Endangered Species Act (ESA) protection, US Fish & Wildlife 

Service (USFWS) recently deemed ongoing public- and private-land conservation efforts 

sufficient to preclude the need for a listing. Livestock grazing, predominantly by cattle 

(Bos taurus) and sheep (Ovis aries), has been suggested as a contributing factor in 

historical population declines (Connelly and Braun 1997, Beck and Mitchell 2000, 

Wisdom et al. 2002, Crawford et al. 2004) and remains a contentious management issue. 

Effects of livestock grazing on wildlife populations are thought to manifest primarily 

through the effects of herbivory on vegetation composition and structure—e.g., reduction 

in food abundance or hiding cover afforded by herbaceous plants (Fleischner 1994). 

Wildlife-habitat relationships are inherently hierarchical in scale (Johnson 1980), 

however, and variation at fine scales is properly treated within the context of broader-

scale environmental attributes and processes affecting space use and fitness. Recent 

research, for example, has demonstrated the primacy of factors such as weather (Hovick 

et al. 2015) and landscape configuration (Jorgensen et al. 2014, Simonsen and Fontaine 

2016) over local vegetation structure in driving nest survival in galliforms. Still, each of 

the eight petitions to list sage-grouse under the ESA received between 1999 and 2005 

implicated livestock grazing among continued threats to population persistence. For the 
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past 20 years there has been a recognized need for research on the relationship between 

livestock grazing and sage-grouse ecology (Dobkin 1995, Beck and Mitchell 2000, 

Crawford et al. 2004). However, no study to date has empirically linked sage-grouse 

behavior or demography to grazing management. 

Numerous relationships between livestock grazing and sage-grouse have been 

hypothesized (see Beck and Mitchell 2000), with a consensus that nest success, one of the 

most influential vital rates affecting sage-grouse population growth (Taylor et al. 2012, 

Dahlgren et al. 2016), is likely impacted by grazing. The primary mechanisms through 

which grazing is thought to impact nest success include increased nest abandonment from 

direct disturbance by livestock and reduced concealment by herbaceous understory 

vegetation facilitating nest detection by predators. There is anecdotal evidence of cattle 

(Rasmussen and Griner 1938, Coates et al. 2008) and sheep (Patterson 1952) causing nest 

abandonment, but to our knowledge no published studies have quantified the effect of 

livestock presence on sage-grouse nest survival. The latter, indirect mechanism is 

supported by studies reporting a positive relationship between cover or height of 

herbaceous vegetation—primarily grasses—and nest success (Gregg et al. 1994, Delong 

et al. 1995, Holloran et al. 2005, Doherty et al. 2014) coupled with the fact that livestock 

consume herbaceous vegetation. However, the importance of grass height was recently 

questioned by Gibson et al. (2016) who highlighted an inherent bias in commonly-used 

field methods that produces inflated or even spurious effects of vegetation height on nest 

survival. Nevertheless, it is widely believed that livestock grazing has played a role in 

contemporary population declines (Connelly and Braun 1997) and that increasing 

herbaceous cover and height through altered or reduced grazing may help bolster 
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populations (Wisdom et al. 2002, Taylor et al. 2012, Doherty et al. 2014). Moreover, the 

relationship between herbaceous understory and sage-grouse nest survival has played a 

prominent role in shaping public lands grazing policy, with 11 of 15 completed BLM 

Resource Management Plan Amendments within the range of sage-grouse containing 

minimum grass height recommendations among habitat objectives for sage-grouse. 

The scarcity of reliable knowledge (Romesburg 1981) about relationships between sage-

grouse and livestock grazing reflects, in part, the challenges of conducting grazing-

related research at relevant scales. Sage-grouse often occupy patchworks of private and 

public ownership and individuals may frequently cross boundaries delimiting differing 

management strategies. Females, for example, may travel 10 km or more between 

breeding grounds and their eventual nest site (Holloran and Anderson 2005). 

Implementing—let alone replicating—experimental treatments over areas sufficiently 

large to measure a response is therefore both logistically challenging and costly. 

Replicated natural experiments may, however, provide the necessary conditions for 

testing many scientific hypotheses (Sinclair 1991), including those regarding effects of 

livestock grazing management on sage-grouse. 

In 2010, the US Department of Agriculture Natural Resources Conservation Service 

(NRCS) began a coordinated range-wide conservation effort called the Sage Grouse 

Initiative (SGI). Rotational grazing systems are among the primary tools NRCS employs 

to improve sage-grouse habitat on private lands. Briefly, rotational grazing systems 

involve moving livestock herds through a number of pastures or paddocks throughout the 

grazing season, shortening the duration of use, and often altering the timing of use of 

each pasture from year to year (Hormay 1956;1970). Additionally, one or more pastures 
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may be rested (i.e., no livestock grazing for ≥ 12 months) on a rotating basis to allow for 

plant recovery and accumulation of residual plant matter and litter. Though frequently 

recommended to foster a number of conservation goals, evidence for benefits of 

rotational grazing systems over alternative grazing management strategies is mixed at 

best (Briske et al. 2008), though few studies have explicitly measured outcomes of 

rotational grazing systems on species of conservation concern. 

We present findings from the first five years of a 10-year grazing experiment in central 

Montana where SGI rotational grazing systems were simultaneously implemented on 

several ranches. NRCS began enrolling landowners in SGI rotational grazing systems 

(hereafter SGI-RGS) in 2010, targeting ranches in state-designated “core areas” of high 

sage-grouse abundance. From 2010 to 2012, 10 landowners in one such core area in 

central Montana elected to participate in SGI-RGS contracts, with enrolled acreage 

peaking in 2012 at approximately 50,585 ha (125,000 ac), 67% of which were inside core 

area boundaries.  

Our objectives were twofold. First, we sought to test the aforementioned hypothesized 

direct and indirect effects of livestock grazing on nest survival. If livestock grazing 

reduces nest survival by inducing abandonment, we predict that the presence of livestock 

in the pasture during incubation and/or increased evidence of livestock use surrounding 

the nest will be associated with lower nest survival. If livestock grazing indirectly affects 

nest survival through consumption of herbaceous hiding cover around the nest, we 

predict that greater height and/or cover of herbaceous vegetation surrounding the nest 

will be associated with increased nest survival. Second, we compared vegetation structure 

and nest survival on SGI-RGS ranches to neighboring, non-participating ranches 
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(hereafter non-SGI) to test the hypothesis that rotational grazing systems implemented 

through SGI increase the attractiveness or quality of nesting habitat. We predicted that 

herbaceous vegetation metrics related to nest site selection and/or nest survival would be 

positively affected by SGI-RGS and pasture rest and that nests on SGI-RGS ranches or 

rested pastures would be more successful. 

STUDY AREA 

Our study area, near the town of Roundup, Montana (46.448° N, 108.543° W, Figure 1), 

is characterized by rolling topography ranging in elevation from 975 to 1250 m. 

Vegetation is typical of inter-mountain big sagebrush steppe (NatureServe 2015), with 

Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis) and silver sagebrush 

(Artemisia cana) both common and co-dominant with a mix of rhizomatous and 

caespitose perennial grasses. Mean annual precipitation at Roundup (1981 – 2010) is 359 

mm and annual precipitation during the study ranged from 265 mm in 2012 to 485 mm in 

2014. Approximately 40% of annual precipitation falls between June and August (Figure 

1). The study area encompasses 30 sage-grouse leks with >1 displaying male recorded in 

≥ 1 year between 2011 and 2015. Area lek counts suggest the study was initiated just 

before the bottom of a trough in the population cycle, with recovery evidently beginning 

during 2015 and continuing through 2016 (Figure 2). Median high male counts on these 

leks ranged from 7 in 2014 to 25 in 2016. 

Rotational Grazing Systems 

Ranches enrolled in SGI-RGS comprised a variety of configurations (i.e., ranch size, 

number of herds, stocking rate, existing infrastructure), therefore grazing plans were 
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individually customized to accommodate ranch configuration and landowner needs. 

However, all plans adhered to the NRCS Montana Prescribed Grazing conservation 

practice standards (NRCS 2012) and implemented a consistent set of minimum criteria 

designed to positively influence features of sage-grouse habitat. These criteria included: 

1) utilization rates of 50% or less of current year’s growth of key forage species, 2) 

duration of grazing ≤ 45 days, 3) timing of grazing changed by at least 20 days each year, 

and 4) a contingency plan for exceptional circumstances such as drought or fire. 

Infrastructure such as cross fencing and supplemental water were added where necessary, 

and NRCS cost-shared to cover these expenses. In return for higher rates of 

compensation, landowners could optionally elect to rest 20% of the identified sage-

grouse nesting habitat (areas with ≥5% sagebrush cover) on their ranches from grazing on 

an annually rotating basis. Nine of the 10 landowners enrolled during the study elected to 

incorporate rest. Rest period was intended to provide rested pastures two full sage-grouse 

nesting seasons without livestock use and was generally ≥15 months in duration. 

Enrollment in an SGI-RGS contract is entirely voluntary but incentive payments are 

contingent upon contract compliance, which is monitored annually. SGI-RGS contracted 

ranches ranged in size from approximately 1,660 to 7,690 ha (4,100 to 18,990 ac) and 

covered approximately 40% of the Golden Valley core area (Figure 1). We secured 

permission to access all 10 ranches enrolled in SGI-RGS, which constituted our treatment 

group. 

We also received permission to access land owned by >40 area landowners with non-

enrolled lands, which constituted our control group. Management of non-SGI lands 

encompassed a variety of grazing systems, but most were managed less intensively, i.e., 
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with a season-long grazing strategy or slower rotations through larger pastures, usually 

without annual changes in season of use. Non-SGI ranches were distributed throughout 

the remainder of the Golden Valley core area as well as in the Musselshell and Petroleum 

core areas (Figure 1). 

METHODS 

Sage-Grouse Capture and Nest Monitoring  

We captured female sage-grouse during the early breeding season (March-April) in 2011-

2015, and during late summer (August-September) in 2012-2015 using spotlights and 

hoop netting techniques from all-terrain vehicles (Wakkinen et al. 1992). We aged sage-

grouse as juveniles (1st year after hatch) or adults, and affixed 25 g necklace-style VHF 

transmitters (Advanced Telemetry Systems, Isanti, MN). Females were tracked at least 

twice weekly until they began to make localized movements indicative of nesting 

behavior, at which point we reduced our monitoring interval to daily if possible. When a 

female was detected in the same location on successive relocations, we attempted to 

identify the female on a nest while maintaining a distance of at least 10 m to avoid 

flushing. Nests were marked from a distance of ~ 10 m with natural materials, and 

listening points were established ≥ 100 m from the nest for monitoring nest status 

remotely via telemetry. We monitored nests from the listening point every 2-3 days until 

the female moved from the nest, at which point we confirmed nest fate as successful (at 

least one hatched egg with membrane detached) or failed. Predation is the primary cause 

of nest failure in sage-grouse, but we recorded failed nests without evidence of predation 

(i.e., without broken or missing eggs) as abandoned. All animal handling was approved 

under University of Montana’s IACUC Animal Use Protocol 011-14DNWB-031914. 
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Modeling Framework and Model Selection 

We used Bayesian methods to fit nest site selection and nest survival models to facilitate 

simultaneous variable selection and parameter estimation. We began nest site selection 

and nest survival analyses with an initial screening of candidate variables to consider for 

multi-variable models by fitting univariate models to each variable and rejecting those 

with 85% credible intervals of coefficient estimates overlapping zero. For univariate 

model fitting we placed vague N(0, 100) priors on regression coefficients, and ran 10,000 

iterations following 50,000 samples for burn-in. Remaining candidate variables were 

screened for multicollinearity using pairwise Pearson correlation coefficients. When pairs 

of variables were highly correlated (|r| > 0.5), we retained the variable that we reasoned 

to have the simplest biological interpretation. 

We used a Bayesian variable selection technique to identify supported variables and 

produce model-averaged coefficient estimates (O’Hara and Sillanpaa 2009). The 

screened set of K candidate variables entered into the final model, in which each 

coefficient βk was multiplied by a binary indicator variable Ik (Kuo and Mallick 1997, 

O'Hara and Sillanpaa 2009), and inference was based on the posterior distributions of 

βkIk, providing model-averaged parameter estimates and 95% credible intervals. In model 

fitting, coefficient priors were scaled according to the number of parameters in the model 

at each MCMC iteration such that total model uncertainty was held constant across 

candidate models. Thus, priors for all βk were distributed N(0, (V/M)-1) where M was the 

number of non-zero indicator variables and V ~ Gamma(3.29,7.8) such that the marginal 

prior distributions on nest-site selection probability or daily nest survival probability were 

approximately U[0,1] (Link and Barker 2006, Smith et al. 2011). We placed 
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Bernoulli(0.5) prior distributions on all indicator variables, representing no prior 

information about individual variable importance (O'Hara and Sillanpaa 2009). We 

calculated Bayes factors (BF) to determine support for inclusion of each variable in a 

final model, where BF for each indicator variable was calculated using prior (Iprior = 0.5) 

and posterior mean (Iposterior) estimates (Smith et al. 2011) as 

𝐵𝐹 =
𝐼-./0123.2/(1 − 𝐼-./0123.2)

𝐼-23.2/(1 − 𝐼-23.2)
 

A BF ≥ 3 is indicative of a coefficient with strong support, so we used this threshold to 

determine which coefficients to use for inference - analogous to a top model as identified 

by other forms of model selection (e.g., Akaike's Information Criterion; Converse et al. 

2013). For final model fitting we ran 100,000 iterations following 100,000 samples for 

burn-in. We visually assessed convergence and mixing and calculated the Gelman-Rubin 

statistic (Gelman and Rubin 1992, Brooks and Gelman 1997) for all coefficients using 3 

chains with different initial values. Models were fit using JAGS (version 4.2.0, mcmc-

jags.sourceforge.net, accessed 19 February 2016) via the runjags package (Denwood in 

press) in program R (version 3.3.0, www.r-project.org, accessed 3 May 2016). 

Nest Site Selection Modeling 

Used-Available Design.— Following cessation of nesting, we returned to nests to 

measure vegetation and other covariates. We made identical measurements at a random 

sample of available locations to quantify resources available to nesting females. We 

imposed several criteria to develop a sample of available locations relevant to the 

behavior of female sage-grouse selecting a nest site (3rd and 4th order; Johnson 1980). 
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Specifically, available points were constrained to areas with ≥ 5% visually estimated 

sagebrush canopy cover at the plot scale (15 m) and within 6.4 km of leks from which 

females were captured (Holloran and Anderson 2005, Coates et al. 2013). At points 

meeting these criteria we selected the nearest sagebrush shrub ≥ 30 cm in height to 

designate the nest shrub, as sage-grouse are known to select shrubs of at least this height 

for nesting (Connelly et al. 2000).  

Nest-Site Selection Model.— We fit used-available resource selection function (RSF; 

Manly et al. 2002, Johnson et al. 2006) models using a logit-link to relate measured 

covariates to used (𝑦 = 1) or available sites (𝑦 = 0). Only first nests were included, as 

birds may alter nest site selection following nest predation (Marzluff 1988, Chalfoun and 

Martin 2010). We enforced a separate intercept β0 for each breeding season j to account 

for varying prevalence of used nests across years because prevalence was a design 

parameter rather than a random variable. For each site, i:  

𝑦3~𝐵𝑒𝑟𝑛 𝜋3  

and 𝜋i	was	modeled	as	a	function	of	K	covariates	xi:	

𝑙𝑜𝑔𝑖𝑡 𝜋3 = 𝛽WX + 𝐼Z𝛽Z𝑥3,Z

]

Z^_

 

Daily Nest Survival Modeling 

Nest encounter histories consisted of observed nest states Y for each day t of observation, 

where 𝑌3,0 = 1 if nest i was observed alive on day t, 𝑌3,0 = 0 if nest i was observed to 
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have failed (female absent and some or all eggs destroyed), and 𝑌3,0 = NA on days when 

nest state was not observed. Beginning on the first day after the nest was detected, 

𝑌3,0c_~
0												𝑖𝑓	𝑌3,0 = 0

𝐵𝑒𝑟𝑛 𝜙3,0 		𝑖𝑓	𝑌3,0 = 1 

Daily survival probability 𝜙3,0 was modeled as a function of nest- and time-varying 

covariates xi,t using a logit link. We estimated a global intercept and included a random 

effect for each year j: 

logit 𝜙3,0 = 𝛽W + 𝐼Z𝛽Z𝑥3,0,Z

]

Z^_

+ +𝛼X 

𝛼~Ν(0, 𝜎i) 

The standard deviation for the random year effect,	𝜎i, was given a vague half-Normal 

prior with mean 0 and standard deviation 100 (Gelman 2006). Prior to testing habitat 

covariates, we tested for effects of hen age (juvenile or adult), nest attempt, date, and nest 

age. A random effect for ranch was included in models with a categorical grazing system 

variable to acknowledge non-independence of repeat observations within a ranch. All 

variables were scaled and centered before model fitting. We derived an estimate of 

annual nest success by exponentiating estimated daily survival rate from the full model 

by the 27-day incubation period typical in our study area. 

Vegetation Response to RGS and Rest 

In addition to directly testing for effects of SGI-RGS on nest survival, we sought to 

quantify the response of vegetation attributes suspected to influence sage-grouse nesting 
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ecology to SGI-RGS. We hypothesized that SGI-RGS would increase herbaceous 

vegetation structure, particularly live and residual grass height and cover. Metrics 

considered indicators of rangeland health, such as litter cover and bare ground, were also 

of interest. We sampled vegetation attributes on enrolled and non-enrolled ranches in 

2012 – 2015. In addition to differences among grazing systems we wanted to quantify 

effects of rest from grazing. Pastures rested from grazing were rotated on an annual basis, 

and we were unable to get reliable long-term grazing schedules for most ranches. 

Additionally, some ranches began or ended their enrollment during the study. We were 

therefore unable to use permanent vegetation plots, and instead generated random 

samples each year. We did not sample SGI-RGS treatments during the first year of 

implementation to reduce the chance of lag effects affecting our inferences. We 

conducted a pilot study in 2012, sampling 100 plots (50 SGI-RGS and 50 non-SGI) to 

determine necessary sample sizes in following years. Based on earlier studies (e.g., Gregg 

et al. 1994, Holloran et al. 2005, Doherty et al. 2014) reporting a positive effect of grass 

height on nest survival, we chose target sample sizes to achieve 80% power to detect a 

10% difference in grass height (i.e., approximately 2 cm) associated with treatment at α = 

0.05. From our pilot samples we found variation in topographic position (i.e., hilltops, 

flats, valley bottoms or drainages) and soil type accounted for much of the observed 

variation in grass height. We therefore stratified the study area by topographic position, 

soil type, and distance from water and restricted our samples in 2013 – 2015 to a range of 

conditions we felt were representative of sage-grouse nesting habitat (see Appendix A for 

details). Statistical tests were conducted only on plots sampled from 2013 – 2015. 
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At vegetation response plots, we measured a subset of the variables measured at nests 

that were likely to be affected by grazing management. We measured areal cover of 

herbaceous plants, litter, and bare ground using 12 20x60 cm frames (Daubenmire 1959) 

per plot, placed at 3, 6, and 9 m from plot center in each of the cardinal directions. At the 

same points, we measured the tallest droop height of the nearest live and residual 

herbaceous plant, excluding inflorescences. We also measured visual obstruction with a 

Robel pole, taking readings from 1 m above the ground 4 m from the pole with the pole 

placed 1, 3, 5, and 7 m from the plot center in each cardinal direction. We did not 

measure shrub density or cover, nor require a minimum shrub cover at sampled locations, 

as we did not anticipate differences in the shrub component due to grazing management. 

Plots were, however, restricted to sites dominated by native rather than invasive or 

planted vegetation. All vegetation response plots were measured during July to minimize 

variation due to plant phenology. 

We used linear mixed-effects models to test for grazing system and pasture rest effects 

(fixed effects) on vegetation metrics while accounting for variation among years and 

ranches (random effects). Models were fit using the lme4 package (Bates et al. 2015) in 

R. Significance of fixed effects was assessed with likelihood ratio tests comparing 

models with and without fixed effects for SGI-RGS and pasture rest. 

Factors Influencing Sage-Grouse Nesting Ecology  

Sage-grouse nest-site selection and survival are influenced by environmental factors at 

multiple spatial scales (Aldridge and Boyce 2007, Doherty et al. 2010). We therefore 

considered variables measured at several spatial scales, including attributes of 1) the 
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landscape within 1.61 km (1 mi) of the nest (landscape scale), 2) sagebrush cover and 

topography within 100 m of the nest (patch scale), 3) vegetation within 15 m of the nest 

site (plot scale), and 4) the nest shrub and vegetation immediately beneath its canopy 

(nest shrub scale). 

Landscape-scale Variables.—Landscape composition has demonstrated effects on nest 

survival in birds (Chalfoun et al. 2002, Stephens et al. 2004), which should exert selective 

pressures shaping behavior. We quantified the proportion of the landscape in sagebrush 

dominated vegetation using a geographic information system (GIS) coverage developed 

specifically for our study area. This product uses field-collected high-resolution vertical 

digital photographs in conjunction with aerial and satellite imagery to map cover of 

functional components of rangeland vegetation (e.g., herbaceous vegetation cover, bare 

ground, shrub cover) at 1 m resolution (Sant et al. 2014). We aggregated the 1 m product 

to 10 m resolution and determined the proportion of the landscape with ≥5% sagebrush 

cover. We tested for a cumulative effect of disturbance using an anthropogenic 

disturbance layer which included the footprint of roads, urban areas and other impervious 

surfaces, wind turbines, and oil & gas well pads (J.S. Evans, The Nature Conservancy, 

unpublished data). Finally, we quantified the proportion of the landscape in cropland 

using the annually-updated Cropland Data Layer from the USDA National Agricultural 

Statistics Service (Johnson and Mueller 2010, USDA-NASS 2015). 

Landscape-scale variables also included distances from features potentially facilitating 

nest predators such as roads (Webb et al. 2012, Coates et al. 2014), including county 

roads and highways and lesser-traveled two-track service roads; mesic areas (Webb et al. 

2012); and cropland (Greenwood et al. 1995, Phillips et al. 2003, Manzer and Hannon 
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2005). We log-transformed all distance metrics to impose a decaying influence as 

locations are farther from features, except in the case of mesic vegetation, which was 

included as a quadratic term for nest site selection. We hypothesized females would 

select nest sites at an intermediate distance from mesic areas, which represent poor 

habitat for nesting but contain critical resources for brood rearing (Schreiber et al. 2015, 

Donnelly et al. 2016).  

Patch-scale Variables.— We characterized sagebrush cover at the patch scale (100 m 

grain) by first aggregating the 1 m sagebrush canopy cover layer to 10 m resolution using 

the mean value then calculating the mean and standard deviation within a 100 m buffer 

around each point to characterize average cover and cover heterogeneity of sagebrush. To 

characterize patch-scale topography we calculated terrain roughness as the standard 

deviation of elevation estimates from a 10 m digital elevation model in a 100 m buffer 

around each point (U.S. Geological Survey 2015). 

Nest- and Plot-scale Variables.— The influence of nesting shrub and plot-scale variables 

on sage-grouse nesting ecology has received disproportionate attention in past research, 

with studies variously reporting evidence for the importance of live or residual 

herbaceous vegetation height (Aldridge and Brigham 2001, Holloran et al. 2005) and 

cover (Gregg et al. 1994, Sveum et al. 1998), bare ground (Dzialak et al. 2011), shrub 

height (Popham and Gutierrez 2003) and cover (Gregg et al. 1994, Kolada et al. 2009a, 

Webb et al. 2012), visual obstruction, and litter (Kaczor et al. 2011). We measured 

canopy cover of shrub species using the line intercept method with two perpendicular 30 

m tapes centered at the nest shrub (Wambolt et al. 2006), and parsed measurements 

between all shrubs and sagebrush-only species. We also measured shrub height as the 
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tallest live portion, excluding inflorescences, of the nearest shrub 3 and 6 m from the 

center of the nest in each cardinal direction. We measured nest shrub height, maximum 

width, and greatest width perpendicular to the axis of the maximum width to calculate 

nest shrub volume using the formula for the volume of an ellipse. When the nest was 

located beneath >1 shrub with a contiguous canopy, the shrubs were treated as a single 

shrub for measurement purposes. 

We visually estimated percent cover of all herbaceous plants, grasses (classified as native 

and nonnative), litter, forbs, and mosses and lichens, and bare ground using 20x60 cm 

frames (Daubenmire 1959) at 3 and 6 m from the center of the transect in each cardinal 

direction. All technicians were trained to estimate cover by a single lead observer each 

year and periodically checked throughout the season for consistency (i.e., +/- 5% for all 

cover classes). Cover estimates by category were made beneath the shrub canopy, and 

were therefore constrained to sum to 100%. We estimated the height of live and residual 

herbaceous vegetation by measuring the maximum droop height (i.e., the vertical height 

of the undisturbed plant), excluding inflorescences, of the grass or forb plant nearest to 

points 3 and 6 m from the center of the nest in each cardinal direction. We also measured 

the maximum droop height of the tallest live and residual grass rooted beneath the canopy 

of the shrub(s) concealing the nest. 

Visual obstruction at the nest was measured using a Robel pole (Robel et al. 1970) 

centered at the nest shrub, with measurements read from 4 m in each cardinal direction at 

a height of 1 m above the ground. Measurements at 1, 3, and 5m from the shrub in each 

cardinal direction were averaged for a plot-level visual obstruction estimate. We 

hypothesized that preference for herbaceous hiding cover might be more pronounced at 
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nest sites with little shrub cover, and therefore considered interaction terms between 

shrub cover and residual grass height or total herbaceous cover. It remains unclear 

whether herbaceous vegetation or shrubs are more important in concealing sage-grouse 

nests (France et al. 2008, Gibson et al. 2016), so we considered support for size of the 

nest shrub, visual obstruction at the nest shrub, and height of herbaceous plants rooted 

beneath the nest shrub for survival analyses.  

To quantify past and current seasons’ livestock use in the immediate vicinity of nests, we 

counted cattle dung pats and measured the proportion of herbaceous plants grazed within 

15 m of the nest. Density of dung pats is an index of intensity of use of an area by grazing 

animals that has been shown to be indicative of forage utilization and vegetation structure 

(Bailey and Welling 1999). We recorded both current year’s and previous year’s dung 

pats, distinguished by the level of degradation and oxidation. We also recorded the 

number of plants showing evidence of grazing during the current year from a sample of 

100 randomly selected herbaceous plants. We then scaled and centered measurements of 

current year’s dung pats and proportion of plants grazed and added them to produce an 

index of current year’s livestock use intensity at the plot scale. Dung pats from previous 

years were used as an index of previous year’s livestock use intensity. Cattle dung may 

persist in arid ecosystems for up to 6 years (Lussenhop et al. 1982), therefore the 

historical livestock use index represents a relative index of use integrated over the past 

several grazing seasons (Milchunas et al. 1989).  

Detailed grazing records were obtained from most landowners to determine whether 

livestock had been present in the pasture at any time during nesting, and observers 

recorded livestock presence or absence at each visit to the nest. Finally, we recorded 
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whether nests were located in an SGI-RGS pasture and if the pasture was rested from 

grazing for use as treatment factors in nest survival analyses. A pasture was considered 

rested only if it had not been grazed for at least 12 months prior to the onset of the 

nesting season. 

Accounting for bias in herbaceous vegetation measurements.— Measurements of nest- 

and plot-scale variables were made following the fate (hatched or failed) of nests, which 

can produce misleading inference for the effect of concealment on nest survival (Gibson 

et al. 2016). Briefly, Gibson et al. (2016) showed that measuring vegetation at nests 

following nest fate induces a bias in timing of measurement such that successful nests are 

measured later, on average, than failed nests. Successful nests may therefore have greater 

vegetative concealment due to plant phenology alone, as nesting corresponds with a 

season of rapid aboveground plant growth. We used concepts from Gibson et al. (2016) 

to correct for temporal bias between failed and hatched nests when testing herbaceous 

variables affected by plant phenology. We first tested all herbaceous cover and height 

metrics for temporal trends using univariate linear regression on date of measurement, 

fitting separate models for each year to account for annual variation in phenology. If a 

metric displayed a temporal trend in any year, we applied the following correction to that 

metric prior to nest survival model fitting. The estimated slope from the linear regression 

of the variable on date of measurement was multiplied by the days elapsed between 

estimated hatch date and date of measurement, and this adjustment was subtracted from 

the value measured in the field. The resulting predicted hatch-date value was treated as 

data in the nest survival model. For nest site selection models we made a similar 
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correction, with measurements at nest and available plots corrected to the median 

incubation initiation date of their corresponding year. 

Weather Variables.—Precipitation can positively affect productivity of galliforms 

(Heffelfinger et al. 1999, Lusk et al. 2001, Hernandez et al. 2005) including sage-grouse 

(Dusek et al. 2002, Holloran et al. 2005, Blomberg et al. 2012, Blomberg et al. 2014). 

Individual precipitation events, however, can cause nest or brood failure (Flanders-

Wanner et al. 2004, Herman-Brunson et al. 2009, Kaczor et al. 2011, Webb et al. 2012). 

We observed high nest mortality in 2011 during a spring of record high precipitation and 

many days-long rain events during the nesting season. To account for this potential 

source of variation in survival, we tested several daily rainfall variables derived from 

DAYMET interpolated weather data (1 km resolution; Thornton et al. 2014). 

Specifically, we considered variables for the current day’s precipitation, the previous 

day’s precipitation (Moynahan et al. 2007), or total precipitation falling over a 3, 4, or 5 

day period prior to and including the nest-day. We conducted variable selection as 

described above to select the single most supported precipitation variable independently 

of and prior to building the full nest survival model. 

RESULTS 

We captured 298 female sage-grouse between 2011 and 2015 and located and determined 

the fate of 419 nests (SGI-RGS: 80, Non-SGI: 339) from 230 females. We measured 

vegetation at 705 available nest shrubs (SGI-RGS: 130, Non-SGI: 575). Nest and random 

plots from 2011 (n = 97 and 107, respectively) were omitted from nest site selection 

analyses because vegetation was sampled at available plots after nearly all nest plots were 

completed, resulting in a significant temporally-induced bias among measurements (J. T. 
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Smith, unpublished data). Three nests were removed from the survival analysis because 

of early observer-induced abandonment. Among the remaining 416 nests, 199 (47.7%) 

hatched at least one egg, predators destroyed 205 nests (49.3%), 10 nests (2.4%) were 

abandoned for unknown reasons, and 2 nests (0.5%) were abandoned due to predation of 

the female while off the nest. Three more nests were omitted from analyses because 

technicians were unable to access nests to measure nest- and plot-scale covariates. 

Average annual nest success was 49.2% (95% CI from 34.1 – 58.4%). Median clutch size 

was 8 eggs for first nest attempts and 7 for second and third nest attempts. 

Nest Site Selection 

After omitting nests from 2011 and renests within a season, our sample included 286 

used sites and 597 available sites. Of the variables considered in the nest site selection 

model (Table 1), 18 passed initial variable screening with 85% credible intervals that did 

not overlap zero. Sagebrush cover and total shrub cover at the plot scale were highly 

correlated (r = 0.93) and we chose to include sagebrush cover because of its 

demonstrated importance to sage-grouse nest site selection in previous studies. Patch-

scale roughness and plot-scale slope were also highly correlated (r = 0.69); we chose 

patch-scale roughness because we reasoned topographic structure would be perceived at a 

larger spatial scale. Finally, visual obstruction at the plot- and nest shrub scales were 

highly correlated (r = 0.74), and visual obstruction at the nest shrub scale was chosen 

because it’s relationship to nest concealment seemed more plausible. Of the 14 variables 

included in the final model, seven were supported with Bayes factors ≥ 3 (Table 2; Figure 

3). Females preferred to locate nests farther from county roads and highways but closer to 

two-track roads, and avoided landscapes with greater amounts of non-cropland 
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anthropogenic disturbance. At the patch scale, females selected gentler terrain. At the plot 

scale, females selected greater sagebrush cover. Finally, at the scale of the nest substrate, 

females selected shrubs of greater volume. We found no evidence of selection with 

respect to herbaceous vegetation metrics or indices of livestock use. 

Nest Survival 

Effects of hen age, nest attempt, date, and nest age were not supported (85% credible 

intervals overlapped zero). Of the five candidate precipitation variables examined, the 

total amount of precipitation falling over a 4-day period received the greatest support 

with a Bayes factor of 4.26 and was passed on to the final model. Of the variables 

considered in the nest survival model (Table 1), 15 passed initial variable screening. 

Three pairs of variables were highly correlated: visual obstruction at the nest shrub and 

plot scales (r = 0.79), live grass height at the nest shrub and plot scales (r = 0.60), and 

residual grass height at the nest shrub and plot scales (r = 0.54). We chose to include all 

three variables at the nest shrub scale because we assumed a stronger link with predators’ 

ability to detect the nest at this scale. Of the 12 variables passed to the final model, only 

precipitation and distance to county roads and highways were supported by Bayes factors 

≥ 3, with greater amounts of rainfall over a 4-day period and greater proximity to roads 

associated with lower daily nest survival (Table 3; Figure 4). Herbaceous vegetation 

height and cover, grazing system, pasture rest, presence or absence of livestock in the 

pasture during nesting, and indices of livestock use were all unrelated to daily nest 

survival. 
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Vegetation Response to SGI-RGS 

We sampled 325 vegetation plots on non-SGI ranches and 472 vegetation plots on SGI-

RGS ranches, including 218 plots in rested pastures, from 2013-2015 (Figure 6). 

Likelihood ratio tests indicated that live grass height (χ2 = 5.84, df = 1, p = 0.016) was 

greater on SGI-RGS ranches than non-SGI ranches. Residual grass height (χ2 = 3.40, df = 

1, p = 0.065), bare ground (χ2 = 1.28, df = 1, p = 0.259), litter (χ2 = 2.33, df = 1, p = 

0.127), herbaceous vegetation cover (χ2 = 0.01, df = 1, p = 0.929), and visual obstruction 

(χ2 = 0.66, df = 1, p = 0.417) did not differ between grazing systems. After accounting for 

grazing systems, only visual obstruction (χ2 = 7.03, df = 1, p = 0.008) and litter (χ2 = 

5.44, df = 1, p = 0.019) differed between rested and grazed pastures, with greater visual 

obstruction but less litter associated with rested pastures. 

Grazing system and rest effect sizes were modest relative to annual variation (Figure 6). 

Live grass height was 1.35 cm (SE 0.49 cm) greater on SGI-RGS ranches, while the 

estimated standard deviation among years was 0.86 cm. Rest was associated with a 1.26 

cm (SE 0.47 cm) increase in visual obstruction, while the estimated standard error among 

years was 1.23 cm. 

DISCUSSION 

We found no evidence that variation in livestock grazing influenced the nesting ecology 

of sage-grouse, contrary to oft-cited literature relating nest site selection and survival to 

herbaceous vegetation influenced by livestock herbivory. Rather, female selection for 

nest sites was best explained by more temporally static features including topography, 

sagebrush cover, shrub size, and human footprint, whereas precipitation, distance to 
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major roads, and year effects explained variation in nest survival. Our findings suggest 

the importance of good grazing management may lie in maintaining the functioning 

components of intact native sagebrush ecosystems on which grouse rely rather than 

managing for microhabitat conditions found at nests. 

Sage-grouse nest site selection for less rugged areas with greater sagebrush canopy cover 

is consistent with the bulk of previous research (reviewed in Hagen et al. 2007). We also 

found that females generally selected less fragmented landscapes and avoided county 

roads and highways. Selecting sites farther from major roads may reflect selective 

pressure exerted by nest predation. Raised grades, culverts, and power lines associated 

with these roads may provide resources for nest predators (Coates et al. 2014, Hovick et 

al. 2014), and nest survival was positively related to distance from major roads (Figure 

4). Curiously, females demonstrated selection nearer unpaved two-track roads. While this 

finding is contrary to avoidance of anthropogenic features, we suspect this relationship 

may be more reflective of road placement than sage-grouse behavior. Two-track roads in 

this landscape are infrequently used service roads, generally traversing gentle topography 

and used to access areas far from main roads, similar to areas selected by sage-grouse for 

nest sites. Furthermore, two-track roads are not associated with the aforementioned 

features supporting potential nest predators, and may therefore be less likely to exert 

selective pressure leading to avoidance. 

Contrary to expectations, herbaceous vegetation structure did not influence nest site 

selection. This contradicts previous findings of preference for greater cover (Holloran et 

al. 2005, Kirol et al. 2012) and height of herbaceous material (Hagen et al. 2007, Davis et 

al. 2014, Stonehouse et al. 2015) at nests. However, evidence for these relationships is 
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mixed, with many studies reporting no evidence of selection for herbaceous vegetation 

structure at nest sites (Aldridge and Brigham 2002, Popham and Gutierrez 2003, Kolada 

et al. 2009b, Doherty et al. 2010, Kaczor et al. 2011, Kirol et al. 2015, Lockyer et al. 

2015). Similarly, herbaceous vegetation structure failed to explain variation in nest 

survival. While initial models fit using measurements taken following nest fate indicated 

a strong positive effect of live grass height on daily nest survival, correction of grass 

heights to account for growth through the season revealed a lack of association, 

replicating findings of Gibson et al. (2016). Height and cover of residual herbaceous 

material, which did not change appreciably throughout the season, were also unrelated to 

nest survival. In light of these results, it was unsurprising that we found no support for 

positive effects of either rotational grazing systems or rest from grazing on nest survival. 

Evidence for grass height’s association with nest success in sage-grouse—a relationship 

considered sufficiently established to have directly influenced public land management 

policy and private land conservation efforts across the West—should be critically 

reexamined considering the methodological flaws now known to pervade this body of 

literature. Among 12 studies reviewed by Gibson et al. (2016) reporting positive effects 

of grass height or cover on nest survival in greater sage-grouse, only two (Gregg et al. 

1994, Sveum et al. 1998) controlled for plant phenology by measuring vegetation at 

predicted hatch date. Re-analysis of previously published datasets using methods that 

account for phenology could provide useful inferences without additional data collection. 

Support for the “nest-concealment hypothesis,” (Martin and Roper 1988, Martin 1992) 

which posits that females should select nests among dense foliage and experience lower 

predation compared to less concealed areas, is mixed. In a comprehensive review, 



76 
 

Borgman and Conway (2015) reported that 74% of studies testing the nest concealment 

hypothesis in open-cup nesting songbirds failed to find an association between nest 

concealment and nest success. In their examination of the methodological and biological 

drivers of this ambiguity, they found studies that reported measuring concealment within 

one week of nest hatch or failure were about twice as likely to support the nest 

concealment hypothesis (Borgmann and Conway 2015). This may, however, simply 

reflect that the timing of measurement of concealment is most systematically biased when 

measurements are restricted to within one week of hatch or failure. Measurement later in 

the season, on the other hand, may obscure real relationships because concealment at the 

time of measurement is vastly different than what the active nest experienced. Acquiring 

representative measurements of concealment at nests while accounting for phenological 

changes is challenging but fundamental to drawing unbiased inference on the effect of 

concealment on nest survival (Burhans and Thompson 1998, Borgmann and Conway 

2015, Gibson et al. 2016). 

An alternative hypothesis regarding vegetation structure and nest predation is based on 

predator foraging efficiency and posits that the abundance of other potential nesting sites 

surrounding a nest that must be searched by a predator, rather than the obstructing effect 

of vegetation per se, determines vulnerability to predation (Martin and Roper 1988, 

Chalfoun and Martin 2009). If this were the case for sage-grouse, the density of 

sagebrush plants of a suitable dimension surrounding the nest (i.e., at the plot or patch 

scale) should determine susceptibility to predation and, thus, nest site preference. We are 

unaware of studies that have specifically tested for effects of density of alternative 

nesting sites on selection or survival in sage-grouse, but Gregg et al. (1994) found that 



77 
 

cover of medium-height shrubs (40 – 80 cm, the class most typical of nest shrubs) was 

greater at successful nests than at failed nests in Oregon. In future studies, we suggest 

investigators collect the necessary data to assess support for this alternative hypothesis. 

The lack of association between herbaceous hiding cover and nest survival may, 

alternatively, indicate that herbaceous understory vegetation simply contributes little to 

nest concealment when compared to cover afforded from sagebrush and other shrubs. In 

replicated, experimental grazing trials in southeast Oregon, France et al. (2008) reported 

that 75% utilization of the herbaceous understory in a Wyoming big sagebrush plant 

community resulted in only a 5% decrease in visual obstruction at simulated sage-grouse 

nests. That such heavy herbaceous vegetation utilization had such a minor effect on 

concealment supports the hypothesis that shrubs, not grasses or forbs, provide the 

majority of concealing cover for sage-grouse nests. Thus, nesting females may use shrub 

structure as a primary cue of quality when selecting a nest site, which is supported by our 

finding that sagebrush cover at the plot scale had the largest impact on selection (Figure 

3). Given such strong selection, we may have failed to detect concealment effects on nest 

survival because female selection has canalized natural variation in sagebrush cover at 

nests, with most nests occurring in “adaptive peaks” providing sufficient concealment 

from predators (Remeš 2005, Latif et al. 2012). 

Ultimately, extended precipitation events had the greatest impact on sage-grouse nest 

survival. The most supported precipitation variable was total rainfall over a 4-day period, 

indicating that nest survival is particularly sensitive to precipitation events lasting several 

days (Figure 5). Nesting females may be able to “sit out” shorter storms, foregoing off-

bouts until after the rain subsides, while longer storms force females to leave the nest 
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exposed to cold and wet conditions. Expectations of greater frequency of heavy 

precipitation events under most climate change scenarios (Walsh et al. 2014) may 

therefore be cause for concern, especially in sage-grouse populations east of the 

continental divide. Precipitation is often thought to positively contribute to reproduction 

in galliforms (but see Flanders-Wanner et al. 2004), including sage-grouse, through 

greater availability of forb and insect food, and has been positively linked to population-

level response among sage-grouse in the Great Basin (Blomberg et al. 2012). However, 

this apparent contradiction may simply be an issue of scale and timing. Studies reporting 

a positive effect of precipitation have measured rainfall at coarse scales (e.g. annual 

regional climatic variables) to explain population-level responses whereas we used 1 km-

resolution daily rainfall data to assess impacts to survival of individual nests. 

Furthermore, our study area is east of the Rocky Mountains in a region characterized by a 

more continental climate (i.e., a greater portion of annual precipitation falling in the 

summer) than studies that have found positive effects of precipitation on sage-grouse 

populations (Figure 1). In this climate, major rainfall events are more likely to coincide 

with incubation and brood rearing when grouse may be most sensitive to exposure. 

While we did not find that variation in livestock grazing influenced the nesting ecology 

of sage-grouse, it is important to note that nest survival is only one among several 

influential vital rates driving population growth. Estimated annual nest success rates—

approximately 49% across all years—were typical of sage-grouse populations range-wide 

(Connelly et al. 2000, Taylor et al. 2012), suggesting that nest success is unlikely to be 

limiting growth of this population. Fitness benefits may still accrue if SGI-RGS 

positively affects resources needed during other life stages. Although we detected 
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negligible differences in upland vegetation associated with SGI-RGS, the scope of this 

analysis precluded an evaluation of several resources thought to be important for chick 

survival such as forb diversity and abundance, arthropod abundance, and vegetation 

structure in mesic areas used intensively by brood-rearing hens in late summer. Data 

collection will continue in this study system for an additional 5 years (2016 – 2020) to 

assess factors associated with adult female and individually-marked chick survival (n = 

342 from 184 broods to date). Furthermore, our results should be extrapolated with 

caution, as our study area is characterized by a different precipitation regime than much 

of the range (Figure 1). For example, extreme precipitation events during the nesting 

season, which drove much of the variation in nest survival in our study, may be more 

common in our region than west of the continental divide. 

MANAGEMENT IMPLICATIONS 

Our findings reinforce the importance of intact, sagebrush dominated landscapes to 

nesting sage-grouse. Livestock grazing, within the parameters observed in our study area, 

did not appear to affect sage-grouse nesting habitat quality through mechanisms widely 

hypothesized in management literature. Grazing strategies and policy focused on 

fundamental rangeland health principles such as promoting diverse native plant 

communities resistant to exotic plant invasion and resilient to natural disturbances such as 

drought and fire (Davies et al. 2011, Chambers et al. 2016) may be sufficient to conserve 

resources needed by nesting sage-grouse. While further research is needed to address 

potential relationships between livestock grazing and other influential vital rates (e.g., 

chick and adult female survival), the foremost management priority should be preventing 

further loss and fragmentation of sagebrush-dominated vegetation communities from 
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land-uses and activities known to affect sage-grouse populations, such as infrastructure 

and activities related to energy development (Green et al. 2016, Naugle et al. 2011) and 

conversion of sagebrush-dominated rangelands to cropland (Smith et al. 2016). 
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FIGURES 

Figure 1. Study area in central Montana. Sage-grouse core areas are indicated by gray 

polygons and leks are indicated by black circles, with size of circles proportional to the 

highest male count recorded from 2011 – 2015. Inset map shows location of study area 

(star) within the current range of sage-grouse (gray shading), and isopleths indicate the 

proportion of annual rainfall occurring between June 1 and August 31. In the study area, 

approximately 39% of annual rainfall occurred during these months on average from 

1981 – 2010. 
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Figure 2. Historical trend in median high male count at sage-grouse leks active between 

2011 and 2015 (n = 30; solid black line) within the study area in central Montana. Total 

area of wheat harvested in these three counties over the same period is shown by the 

dashed gray line (source: U.S. Department of Agriculture, National Agricultural Statistics 

Service; data not available for all years). Annual fluctuation in harvested area reflects 

fallow rotations and short-term responses to grain prices, but the long-term trend in peaks 

and troughs indicate a steady increase in crop area over the past several decades. Shaded 

area depicts the years during which the study was conducted. 
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Figure 3. Coefficient estimates from logistic regression model of variables influencing 

selection of nest sites (n = 286 used sites, n = 597 available sites) by sage-grouse in 

central Montana from 2012 to 2015. Circles indicate medians of coefficient posterior 

distributions and error bars represent 95% credible intervals. Filled circles identify 

important variables supported by Bayes factors ≥3. Selection of nest sites was driven not 

by herbaceous vegetation characteristics at or around the nest but by preference for 

greater shrub cover and nest shrub size, gentle topography, avoidance of county roads 
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and highways, and avoidance of fragmented landscapes. Nest sites were also associated 

with greater proximity to two-track roads, which does not have a clear biological 

interpretation but may reflect tendency for these roads to traverse terrain preferred by 

sage-grouse for nesting, e.g., areas of gentle topography. 
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Figure 4. Coefficient estimates from logistic regression model of variables influencing 

daily nest survival of sage-grouse nests (n = 413) in central Montana from 2011 to 2015. 

Circles indicate medians of coefficient posterior distributions and error bars represent 

95% credible intervals. Filled circles identify important variables supported by Bayes 

factors ≥3. Greater amounts of rainfall over a four-day period was associated with 

reduced daily nest survival, and greater distance from county roads and highways was 

associated with increased daily nest survival. 
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Figure 5. Means and standard deviations of vegetation metrics measured at vegetation 

response plots on central Montana ranches enrolled in Sage Grouse Initiative rotational 

grazing systems (SGI-RGS) and on non-enrolled (non-SGI) ranches, 2012 – 2015. Linear 

mixed effects models revealed that only live grass height differed significantly between 

non-enrolled and SGI-RGS ranches. Visual obstruction measured with a Robel pole was 

significantly higher in rested pastures. Estimated effect sizes were small, however, 

relative to annual variation.  
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Figure 6. Estimated daily survival rate (DSR; black dots) of greater sage-grouse nests and 

95% credible intervals (vertical black lines) and daily rainfall (grey bars) during the year 

of lowest apparent nest survival (A; 2011), and the year of highest apparent nest survival 

(B; 2014). Total precipitation over a 4-day period was one of only two supported 

variables in our nest survival model, with greater amounts of rainfall associated with 

lower nest survival. 
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TABLES 

Table 1. Variables considered in models of nest site selection and daily nest survival for 

greater sage-grouse in central Montana, 2011 – 2015. 

Variable Abbreviated variable name Transformation 
Landscape covariates (0 - 1.61 km from nest)   

Distance to major road (county, highway) DIST TO ROADa,b Logarithmica,b 
Distance to two-track road DIST TO 2TRACKa,b Logarithmica,b 
Distance to cropland DIST TO CROPLANDa,b Logarithmica,b 
Distance to mesic vegetation DIST TO MESICa,b Quadratica; Logarithmicb 
Proportion of landscape disturbed (non-

cropland) PROPORTION DISTURBEDa,b  
Proportion of landscape in cropland PROPORTION CROPLANDa,b  
Proportion of landscape in sagebrush 

landcover (≥5%) PROPORTION SAGEa,b  
Patch (0 - 100 m from nest) covariates   

Topographic roughness ROUGHNESSa  
Sagebrush cover SAGEBRUSH COVERa,b  
Standard deviation of sagebrush cover SAGE HETEROGENEITYa,b  

Plot (0-15 m from nest) covariates   
Live grass height GRASS HEIGHTa,b  
Residual grass height RESIDUAL HEIGHTa,b  
Total herbaceous cover HERBACEOUS COVERa,b Quadratica 
Bare ground BARE GROUNDa,b Quadratica 
Residual herbaceous cover RESIDUAL COVERa,b Quadratica 
Litter cover LITTER COVERa,b  
Visual obstruction (Robel pole) VISUAL OBSTRUCTIONa,b  
Shrub height SHRUB HEIGHTa,b  
Sagebrush cover SAGEBRUSH COVERa,b Quadratica 
Total shrub cover SHRUB COVERa,b Quadratica 
Slope SLOPEa  
Shrub cover × residual grass height [INTERACTION]a,b  
Shrub cover × total herbaceous cover [INTERACTION]a,b  

Nest shrub covariates   
Maximum live grass height at nest GRASS HEIGHTa,b  
Maximum residual grass height at nest RESIDUAL HEIGHTa,b  
Visual obstruction (Robel pole) VISUAL OBSTRUCTIONa,b  
Nest shrub volume NEST SHRUB SIZEa,b  
Nest substrate (other = 0, sagebrush = 1) NEST SUBSTRATEb  

Grazing covariates   
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Pasture grazed during nesting GRAZED DURINGb  
Livestock use index, current year LIVESTOCK INDEX (CURRENT)a,b 

Livestock use index, historical LIVESTOCK INDEX (PAST)a,b  
Grazing system (Other = 0, SGI RGS = 1) SGI-RGSb  
Pasture rest (no = 0, yes = 1) RESTb  

Weather (daily covariate)   
Predicted total rainfall in last 4 days RAINFALL 4DAYb  

Other covariates   
Date DATEb  
Nest age (days since estimated initiation) NEST AGEb  
Hen age (juvenile = 0, adult = 1) HEN AGEb  
Nest attempt (1st = 0, 2nd or 3rd = 1) NEST ATTEMPTb   

a Variable or transformation was considered as a candidate in nest site selection model 

b Variable or transformation was considered as a candidate in nest survival model 
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Table 2. Variables selected for final model fitting for nest site selection of greater sage-

grouse in central Montana, 2012 – 2015. 

Variable Bayes 
Factor1 

Coefficient 
Estimate 

95% Credible Interval 

Lower Upper 
Landscape     

DIST TO ROAD >1000 0.42 0.25 0.60 
DIST TO MESIC 0.42 0.00 -0.04 0.43 
DIST TO MESIC2 0.99 0.00 -0.47 0.35 
PROPORTION DISTURBED 16.08 -0.23 -0.40 0.00 
PROPORTION SAGEBRUSH 0.43 0.00 -0.20 0.05 
DIST TO 2TRACK 467.75 -0.30 -0.45 -0.15 

Patch     
SAGEBRUSH COVER 2.71 0.15 0.00 0.36 
SAGE HETEROGENEITY 2.54 -0.13 -0.32 0.00 
ROUGHNESS 104.71 -0.33 -0.55 -0.11 

Plot     
SAGEBRUSH COVER >1000 0.41 0.18 0.67 
SAGEBRUSH COVER2 0.49 0.00 -0.25 0.18 
BARE GROUND 0.38 0.00 -0.17 0.22 
BARE GROUND2 0.82 0.00 -0.40 0.35 
HERBACEOUS COVER 0.35 0.00 -0.10 0.17 
RESIDUAL COVER 0.71 0.00 -0.29 0.03 
GRASS HEIGHT 0.54 0.00 -0.05 0.25 
LIVESTOCK USE (PAST) 1.61 -0.09 -0.33 0.00 
VISUAL OBSTRUCTION 0.40 0.000 -0.057 0.191 

Nest shrub     
NEST SHRUB SIZE >1000 0.381 0.221 0.546 

1
 Bayes factors ≥ 3 indicate support for variable inclusion. 
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Table 3. Variables selected for final model fitting for daily nest survival of greater sage-

grouse in central Montana, 2011 – 2015. 

Variable Bayes 
Factor1 

Coefficient 
Estimate 

95% Credible Interval 

Lower Upper 
Intercept  3.62 3.20 3.91 
σα (SD of random year effect)  0.17 0.01 0.90 
Weather     

RAINFALL 4DAY 853.70 -0.23 -0.34 -0.11 
Landscape     

DIST TO ROAD 3.28 0.11 0.00 0.26 
DIST TO DISTURB 0.41 0.00 -0.09 0.09 

Plot     
HERBACEOUS COVER 2.24 -0.09 -0.27 0.00 
LITTER COVER  1.97 0.08 -0.01 0.26 
SHRUB HEIGHT 1.29 0.01 -0.02 0.25 
SHRUB COVER 0.51 0.00 -0.08 0.14 
LIVESTOCK USE (PAST) 1.96 -0.07 -0.24 0.00 

Nest shrub     
LIVE GRASS HEIGHT 0.48 0.00 -0.09 0.13 
RESIDUAL GRASS HT 2.00 0.08 -0.01 0.28 
NEST SHRUB SIZE 1.46 0.04 -0.01 0.27 
VISUAL OBSTRUCTION 0.78 0.00 -0.05 0.20 

1
 Bayes factors ≥ 3 indicate support for variable inclusion. 
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Appendix 1: Criteria for selecting plots to measure vegetation response to Sage Grouse 

Initiative rotational grazing systems (SGI-RGS) and pasture rest in central Montana, 2013 

– 2015. 

Variable Acceptable Range Source 

Slope 0 – 5 degrees 10 m-resolution digital elevation model1 

Soil Type2 60C, 60D, 64A, 64B, 68C NRCS SSURGO Database3 

Distance to Water 200 – 1500 m Local NRCS records, National Hydrography Dataset4 

 1USGS 2015 

2Soil map units chosen for inclusion are silty clay loams that typically support sagebrush 

in the study area. 

3 http://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx 

4http://nhd.usgs.gov; verified in the field. 
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ABSTRACT 

Much interest lies in the identification of manageable habitat variables that affect key 

vital rates for species of concern. For birds, vegetation surrounding the nest may play an 

important role in mediating nest success by providing concealment from predators. 

Height of grasses surrounding the nest is thought to be a driver of nest survival in greater 

sage-grouse (Centrocercus urophasianus), a ground-nesting species that has experienced 
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widespread population declines throughout their range. Recent research, however, found 

that widely-used field methods in past studies of nest survival can produce spurious 

inference on the relationship between grass height and nest success. In that study, authors 

demonstrated how measurement of vegetative concealment following nest fate (failure or 

hatch) introduces a bias in timing of measurement such that successful nests are 

measured later in the season, on average, than failed nests. Though tests revealed positive 

effects of grass height on nest survival, grass was taller at successful nests due to the 

confounding effect of plant phenology, not an effect on predation risk. To test the 

generality of this result for sage-grouse we re-analyzed existing datasets comprising 

nearly 900 sage-grouse nests from four independent studies across the range, and 

confirmed that the positive relationship between grass height and sage-grouse nest 

survival previously found in each of these datasets was solely explained by a 

methodological bias. Overall, evidence for a biological effect of grass height on nest 

success in sage-grouse is weak, and re-evaluation of land management guidelines 

emphasizing the importance of tall grasses in nesting habitat may be warranted. 

INTRODUCTION 

Environmental factors affecting influential demographic parameters are appropriate 

targets of management to promote habitat quality for species of conservation concern 

(Mills 2007). For many birds, characteristics of nest sites that mediate nest predation are 

of interest, as nest success is often a key driver of population growth and predation is the 

primary cause of nest failure (Martin 1993; Ricklefs 1969). According to the nest 

concealment hypothesis, nests surrounded by dense vegetation should be more successful 

because they are more difficult for predators to detect or access (Martin & Roper 1988; 
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Martin 1992). Furthermore, vegetative concealment may represent an attractive target for 

conservation action because it can often be managed, e.g., through silvicultural practices 

or manipulation of livestock grazing. 

Support for the nest concealment hypothesis is, however, mixed. In a recent review and 

comparative analysis, only 26% of 114 reviewed studies in open-cup-nesting songbirds 

supported an effect (Borgmann & Conway 2015). Effects of concealment on nest survival 

may be difficult to detect if strong selection for concealed nest sites canalizes variation 

among nests such that most occur in ‘adaptive peaks’ providing adequate concealment 

(Latif et al. 2012; Remeš 2005). However, even studies employing experimental removal 

of vegetation have returned mixed support for the nest concealment hypothesis (e.g., 

Bengtson 1972; Peak 2003; Howlett & Stutchbury 1996; Latif et al. 2012). Numerous 

intrinsic and extrinsic factors may influence the effect of concealment on nest success; 

for example, birds with more brightly-colored plumage appear more dependent on 

vegetation to conceal the nest from predators (Borgmann & Conway 2015) and the 

benefits of visual concealment may depend on the composition of the local predator 

community (Dion et al. 2000; Colombelli-Negrel & Kleindorfer 2009; Clark & Nudds 

1991). More problematic, however, are methodological aspects of studies that produce 

biased inference regarding effects of concealment on nest survival (Borgmann & Conway 

2015; Gibson, Blomberg & Sedinger 2016; Burhans & Thompson 1998). Here, we focus 

on a recently discovered methodological bias pervasive in research regarding habitat-

fitness relationships in greater sage-grouse (Centrocercus urophasianus). 

Greater sage-grouse (herein, sage-grouse) is a species of conservation concern inhabiting 

sagebrush ecosystems of western North America. Though sage-grouse nest beneath 
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shrubs—primarily sagebrush—the perennial grasses and forbs in the interspaces between 

shrubs have long been thought to provide critical visual concealment of nests from 

potential predators (Connelly et al. 2000). This idea is supported by studies reporting 

positive relationships between height and/or cover of herbaceous vegetation surrounding 

nest sites and nest survival (Gregg et al. 1994; DeLong et al. 1995; Doherty et al. 2014; 

Sveum et al. 1998; Coates & Delehanty 2008). Consequently, sage-grouse conservation 

efforts have focused on increasing herbaceous hiding cover in suitable nesting habitat 

throughout the range of the species. Although direct links between livestock grazing and 

sage-grouse demography are lacking, studies indicating positive effects of herbaceous 

vegetation height and/or cover on nest survival provide a plausible mechanism linking 

livestock grazing and nest success (Connelly et al. 2000)—a key demographic rate for 

sage-grouse (Taylor et al. 2012). The validity of inference about the importance of 

herbaceous hiding cover for sage-grouse nest success thus has major implications for 

management of sagebrush ecosystems, where livestock grazing is a ubiquitous land use. 

Recently, Gibson et al. (2016) demonstrated that the positive association between grass 

height—a commonly-used metric of herbaceous concealing cover—and nest survival 

may be indicative of biased methods rather than causation. Using both real and simulated 

data, they found that measuring grass height at nests following nest fate (i.e., hatch or 

failure) produced inflated or even spurious statistical relationships between grass height 

and nest survival. Because successful nests persist and are therefore measured later in the 

season than failed nests, measured vegetative concealment is greater at successful nests 

due to concurrent plant growth rather than the presumed reduction in predation. Despite 

knowledge of this sampling issue dating back decades (e.g., Burhans & Thompson 1998), 
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the pervasiveness of this sampling bias is widespread in sage-grouse literature, with 

>70% of studies sampling vegetation following nest fate (Gibson, Blomberg & Sedinger 

2016). Given the far-reaching implications derived from inference about grass height and 

sage-grouse demography, a post-hoc analysis of previous research was warranted. 

METHODS 

We employ the model-based methods presented in Gibson et al. (2016) to correct for 

phenology in a re-analysis of four datasets from Montana, Utah, and Wyoming (Figure 

1). In the dataset from Eureka County, Nevada analyzed by Gibson et al. (2016), 

vegetation measurements were made at predicted hatch date and a linear model relating 

vegetation height to the date of measurement was used to predict vegetation height at fate 

date, thereby demonstrating the potential bias arising from such a sampling scheme. In 

our re-analysis, we employ this concept in reverse fashion; that is, we regress vegetation 

height on date of measurement to predict grass height at hatch date, as though it had been 

sampled using unbiased methods. 

Datasets 

Re-analyzed datasets included a previously published study that found a significant 

positive influence of live grass height on sage-grouse nest survival across two study areas 

in the Powder River Basin (PRB) in southeast Montana (hereafter PRB North, n=217) 

and northeast Wyoming (hereafter PRB South, n=164); the first 5 years of an ongoing 

evaluation of grazing treatments on sage-grouse ecology in central Montana (Chapter 2, 

n=413); and the first 4 years of a study comparing sage-grouse demography across two 

study areas in northern Utah (Seth Dettenmaier, Utah State University, Unpublished 
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Data, n=105). Including findings from Gibson et al. (2016), these studies encompassed 

1295 sage-grouse nests over a total 28 study-site years from across the range of sage-

grouse (Table 1). Each study used similar methodologies to sample herbaceous 

vegetation surrounding nest sites by taking multiple measurements of grass height along 

intersecting transects centered on the nesting shrub, and using the mean of replicated 

measurements to represent grass height surrounding nests (Table 1). 

Statistical Analyses 

For datasets in which grass height was measured following nest fate, we estimated hatch 

date as 28 days after the estimated nest initiation date, and applied a correction to 

measured grass height covariates following Gibson et al. (2016): 

𝐺𝑟𝑎𝑠𝑠𝐻𝑒𝑖𝑔ℎ𝑡op0qr = 𝐺𝑟𝑎𝑠𝑠𝐻𝑒𝑖𝑔ℎ𝑡sp01 − (𝑆𝑢𝑟𝑣𝑒𝑦𝐷𝑎𝑡𝑒sp01 − 𝑆𝑢𝑟𝑣𝑒𝑦𝐷𝑎𝑡𝑒op0qr) ∗ 𝛽y2p// 

where, for each study site, we fit a linear regression of measured grass height 

(GrassHeightFate) on day of nesting season (SurveyDateFate) to estimate βgrass. This simple 

correction provided a standardized measurement for grass height across nests regardless 

of fate. 

We estimated the effect of grass height on nest success using both corrected and 

uncorrected covariate measurements by fitting Bayesian daily nest survival models to 

each dataset (Schmidt et al. 2010) with the exception of data from Gibson et al. (2016), 

whom provided estimates from their published analysis. In this approach we estimated 

nest survival (φ) for each nest (i) on each day of the nesting season (t) via a logit-linear 

model, which at minimum included an intercept (𝛽W)and coefficient for grass height, 
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while also including coefficients respective authors deemed supportive in top models. 

Nest encounter histories consisted of observed nest states y for each day t of observation, 

where yi,t = 1 if nest i was observed alive on day t, yi,t = 0 if nest i was observed to have 

failed (female absent and some or all eggs destroyed), and  yi,t = NA on days when nest 

state was not observed. Beginning on the first day after the nest was detected, 

𝑦3,0 ∼ 𝐵𝑒𝑟𝑛(𝑦3,0{_𝜙3,0) 

and 

𝑙𝑜𝑔𝑖𝑡(𝜙3,0) = 𝛽W + 𝒙𝒊′𝛽 

Specifically, Doherty et al. (2014) modeled nest survival using covariates including a 

main and quadratic effect for nest age, and categorical variables for a particularly harsh 

spring nesting season with major snow events (2003) and the two study regions (PRB 

North and PRB South). The model fit to data from central Montana included covariates 

for the log of distance to major roads and a measure of 4-day cumulative rainfall (see 

Chapter 2), whereas data from Gibson et al. (2016), and models fit to Utah data include 

only an intercept and coefficient for measurements of grass height. 

We fit daily nest survival models in JAGS 4.0 (Plummer 2003) with the package rjags 

(Plummer 2016) in R 3.3.0 (R Core Team 2016), estimating posterior distributions of 

coefficients using 3 MCMC chains, each with 30,000 samples following 20,000 burn-in 

iterations, while placing vague normal prior distributions on coefficients (𝜇=0; 𝜎=1000). 

Using coefficient posterior distributions, we generated predictions for the mean influence 

of grass height on nest success, the product of daily nest survival over a 28 d incubation 
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period, and 95% credible intervals over the range of grass height values observed within 

each respective dataset. We held additional covariates at their mean value where 

applicable. 

We performed an additional analysis on the four re-analyzed datasets to test whether 

grass surrounding successful nests was taller than grass surrounding failed nests after 

accounting for date of measurement. The null hypothesis states that grass heights (GH) 

measured at nests are a linear function of date of measurement (TIME; days since 

January 1), with normally distributed errors. The alternative hypothesis states that grass 

heights are a linear function of date of measurement, but that successful nests have, on 

average, taller grass than failed nests. We first used AIC to determine the best structure 

for the null model—random intercepts or random intercepts and slopes. The random 

intercepts null model had a fixed effect for TIME and random intercepts for each study 

area-year (STUDY:YEAR) combination to allow for variation in grass height inherent 

among geographically distant study areas. The random intercepts and slopes null model 

consisted of random intercepts and slopes of GH on TIME for each study area-year 

combination to account for different rates of grass growth among years, reflecting 

differences in available soil moisture and timing and quantity of precipitation through the 

nesting season. The independent variable TIME was centered by subtracting the median 

day of measurement from all observations and fit a model. The alternative hypothesis was 

represented by a model where we added a categorical fixed effect for nest fate (FATE; 

failed=0, hatched=1) to the most supported null model. We used a likelihood ratio test to 

assess whether accounting for nest fate improved model fit. Linear mixed models were fit 

using the lme4 package (Bates et al. 2015) in R. 
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RESULTS 

Uncorrected, each of the four re-analyzed datasets revealed a strong, positive association 

between grass height and daily nest survival (Figure 2; dotted lines). Estimated 

coefficients for grass height using uncorrected grass heights were 0.055 (95% CI from 

0.029 - 0.084) for PRB North and PRB South, 0.044 (95% CI from 0.020 - 0.070) for 

Roundup, and 0.058 (95% CI from 0.002 - 0.118) for NE Utah. Following adjustment of 

measured grass heights to remove temporal bias, we found no association between grass 

height and nest survival in any of the four datasets (Figure 2; solid lines). Estimated 

coefficients for grass height using grass heights corrected to hatch date were 0.006 (95% 

CI from -0.019 - 0.032) for PRB North and PRB South, 0.003 (95% CI from -0.015 - 

0.024) for Roundup, and -0.015 (95% CI from -0.060 - 0.032) for NE Utah. 

The random intercept-only model of grass height received the most support, and was used 

as the null model (Table 2). The alternative hypothesis, that grass height surrounding 

successful nests was greater than that surrounding failed nests after accounting for date of 

measurement, was not supported (χ2 = 1.54, df = 1, p = 0.21). 

DISCUSSION 

The analysis presented by Gibson et al. (2016) and confirmed by our reanalysis 

demonstrates that relationships between herbaceous vegetation structure and sage-grouse 

nest success are largely unsupported when phenology is taken into account. The nest data 

we examined were sampled from a broad geographic extent and a variety of ecological 

contexts, including study areas in the Great Basin and northern Great Plains. Given these 

results, the long-held view that the height of herbaceous understory vegetation at the nest 
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site is a crucial determinant of sage-grouse nest success is equivocal at best. While taller 

grass may provide effective concealment from predators under some conditions (e.g., 

particular predator communities), it does not appear that this relationship is universally 

applicable to sage-grouse populations throughout their range. 

Although two studies using unbiased methods reported a positive effect of grass height 

on nest survival (Sveum et al. 1998; Figure 1; Gregg et al. 1994), the preponderance of 

evidence fails to support this relationship. Together, the two studies that support an effect 

of grass height comprise 212 nests monitored across 5 study area-years, while our re-

analyzed datasets in conjunction with Gibson et al.’s (2016) dataset encompass 1295 

nests monitored over 25 study area-years. Moreover, the data presented by Sveum et al. 

(1998; Table 2) merely indicate that cover of short grasses (<18 cm) was lower at 

successful nests than failed nests in 1 out of 2 years (n = 32 nests), while cover of tall 

grasses (>18 cm) did not differ between successful and failed nests in any year, even 

using a liberal α level of 0.1. Nonetheless, the results of this study have generally been 

interpreted to support the hypothesis that taller grass produces greater nest survival 

(Crawford et al. 2004; Connelly et al. 2000). 

The absence of support for an effect of grass height does not necessarily imply nest 

concealment is unrelated to nest survival in sage-grouse. Selection for larger, taller 

sagebrush for nest substrates and preference for nesting in areas with greater areal cover 

of shrubs are well-documented (reviewed in Hagen et al. 2007). In preferred nesting sites, 

grasses and forbs may simply provide little additional cover beyond that provided by 

shrubs (see France et al. 2008). Furthermore, while grasses and forbs afford mostly lateral 

cover, shrubs may provide more effective cover from aerial visual predators such as 
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common ravens (Corvus corax), a primary nest predator for sage-grouse (Coates & 

Delehanty 2008; Coates et al. 2008). Previous research indicates nest site selection in 

sage-grouse is driven by avian predators at broad scales (Dinkins et al. 2012) and 

characteristics of nest sites at small scales are more consistent with avoidance of visual 

(i.e., avian) predators than olfactory (i.e., mammalian) predators (Conover et al. 2010). 

Further research is needed to address whether cover and height of grasses and forbs is an 

important driver of other vital rates in sage-grouse. Selection of sites with greater visual 

concealment and higher arthropod abundance by brood-rearing sage-grouse has been 

documented (Schreiber et al. 2015; Kaczor et al. 2011), but studies directly examining 

effects of herbaceous vegetation structure on either arthropod abundance or sage-grouse 

chick survival in sagebrush ecosystems are few and have produced mixed results (Gregg 

& Crawford 2009; Aldridge 2005). Recently, Gibson et al. (2016) found survival of sage-

grouse chicks to 2 weeks of age was positively associated with height of grass at the nest, 

presumably because height of grass at the nest site is correlated with conditions 

encountered by the precocial chicks during the first weeks of life. A causal relationship 

between grass height and chick survival, however, cannot be inferred from this study. 

Positive effects of herbaceous plant height on chick survival could result from 

concealment from predators or from effects on abundance or community composition of 

arthropods, a critical food source for chicks (Drut et al. 1994; Dahlgren et al. 2010; Gregg 

& Crawford 2009), but it is also plausible that taller grass at the nest is associated with 

some unmeasured factor—e.g., site productivity, precipitation, soil moisture—which in 

turn influences factors causally related to chick survival. 
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While the herbaceous understory is clearly a key component of sagebrush ecosystems and 

sage-grouse habitat (e.g., Chambers et al. 2014), its role in concealing nests from 

predators has been overstated in management guidelines and land management 

documents built on inference now known to be biased. For example, the Habitat 

Assessment Framework (HAF; Stiver et al. 2015), a tool used by the US Bureau of Land 

Management and US Forest Service to evaluate whether public lands are meeting habitat 

requirements of sage-grouse, includes specific guidelines for maintaining adequate height 

of perennial grasses and forbs (>18 cm) based largely on studies indicating positive 

effects on nest success. While it appears these ‘fourth order’ guidelines may place 

unwarranted emphasis on the importance of maintaining herbaceous hiding cover for 

nesting, it should be noted that the HAF appropriately lays out a hierarchical management 

approach which suggests policies be set at the rangewide and regional scales to limit 

habitat loss and fragmentation—known causes of sage-grouse population declines—but 

emphasizes that significant flexibility should be granted to local managers applying finer 

scale guidelines (see Chapter 1, Stiver et al. 2015). Maintenance of tall grasses and forbs 

for nesting cover clearly should not preclude the use of management tools that could 

otherwise help mitigate threats to sage-grouse habitat. 
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TABLES 

Table 1.  We used predictions from five studies across the range of greater sage-grouse, 

representing n=1295 nests over a total of 25 study years. Each study sampled grass height 

similarly, using measurements of the nearest grass height to various points along two 

intersecting transects centered at the nesting shrub. However, total transect length and the 

number of samples per nest varied by study. 

Study Area n Years Transect 
Length (m) 

Samples 
Per Nest 

Data Source 

Eureka County 396 2004-2012 10 10 Gibson et al. 2016 

PRB North 217 2003-2006 30 20 Doherty et al. 2014 

PRB South 164 2004-2006 30 20 Doherty et al. 2014 

Roundup 413 2011-2015 24 8 J. Smith, Chapter 2 

NE Utah 105 2012-2015 30 20 
S. Dettenmaier, Unpublished 
Data 
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Table 2. Candidate linear mixed models of grass height (GH) as a function of day of year 

measured (TIME), study area (STUDY), year of measurement (YEAR), and nest fate 

(failed or hatched; FATE). A model containing a fixed effect of TIME and random 

intercepts for each study area-year combination (STUDY:YEAR) was used as the null 

model. After accounting for phenology among study sites and years, the additional 

information of nest fate provided no improvement to model fit. 

Model log(Likelihood) K AICc ΔAICc 

GH ~ TIME + (1 | STUDY:YEAR) -2848.66 4 5705.37 0.00 

GH ~ 1 + (TIME | STUDY:YEAR) -2852.42 5 5714.90 9.53 
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FIGURES 

 

Figure 1. Studies testing relationship between sage-grouse nest survival and grass height 

surrounding the nest (data from Table 1 in Gibson et al. [2016]). Only studies reporting 

timing of vegetation measurement relative to the nesting cycle are shown. Size of points 

is proportional to sample size. Gibson et al. (2016; A) found studies using grass cover or 

height measured following nest fate (squares) are susceptible to producing inflated or 

spurious effects of vegetative concealment on nest survival, while those using 

measurements taken following the predicted hatch date regardless of nest fate (circles) 
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are unbiased. Our re-analysis of two previously published datasets from Montana and 

Wyoming (B and C) and two unpublished datasets from long-term grazing studies in 

Montana and Utah (D and E) revealed no support for an effect of grass height on nest 

survival after accounting for phenology. 
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Figure 2. Predicted response of sage-grouse nest success (and 95% CI [Eureka County] or 

CRI [other studies]) to live grass height using measurements using a biased method 

following determination of nest fate (dotted lines), and those measured or corrected to the 

predicted hatch date of nests (solid lines). Nest data includes studies from the Powder 

River Basin (PRB) in southeastern Montana (PRB North, Doherty et al. 2014, n=217, 

2003-2007) and northeast Wyoming (PRB South, Doherty et al. 2014, n=164, 2003-

2007); Eureka County, Nevada (Gibson et al. 2016, n=396, 2004-2012); central Montana 

near the town of Roundup (Chapter 2, n=413, 2011-2015), and northeast Utah 
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(Dettenmaier, Utah State University, unpublished data; n=105, 2012-2015). Note that 

limits of x-axes change to reflect the range of grass heights observed within respective 

studies. 
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Figure 3. Average grass height measurements surrounding successful and failed sage-

grouse nests by day of year in each year (rows) in four independent study areas 

(columns). After accounting for phenology, a difference in grass height between 

successful and failed nests was not supported. 
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